{"title":"氧化铝涂层中β-NiAl的降解:等温氧化和真空热处理的比较研究","authors":"Guo-Hui Meng, Shan-Shan Li, Ya-Nan Wang, Pei-Pei Gui, Ming-Yang Zhang, Kai-Yu Guo, Mei-Jun Liu, Guan-Jun Yang","doi":"10.1016/j.corsci.2025.112946","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminide coatings are essential for protecting gas turbine hot-section components, but their longevity is often limited by the degradation of the protective β-NiAl phase. This study aims to elucidate the fundamental mechanisms driving β-NiAl degradation by comparing its behavior in aluminide coatings deposited on a nickel-based superalloy under isothermal oxidation (1100°C, air) and vacuum heat treatment (1100°C, vacuum) conditions. The results demonstrate conclusively that β-NiAl degradation is primarily caused by coating-substrate interdiffusion, which leads to Ni enrichment within the coating, rather than by Al depletion resulting from the formation of the surface oxide scale. Degradation was observed to initiate preferentially at the coating surface, the interface between coating sublayers, and the coating-substrate interface. Furthermore, thinner coatings exhibited accelerated β-NiAl degradation due to enhanced Ni enrichment resulting from shorter diffusion distances. These findings highlight the importance of managing diffusion processes to enhance coating performance and durability in high-temperature environments.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"251 ","pages":"Article 112946"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling β-NiAl degradation in aluminide coatings: A comparative study of isothermal oxidation and vacuum heat treatment\",\"authors\":\"Guo-Hui Meng, Shan-Shan Li, Ya-Nan Wang, Pei-Pei Gui, Ming-Yang Zhang, Kai-Yu Guo, Mei-Jun Liu, Guan-Jun Yang\",\"doi\":\"10.1016/j.corsci.2025.112946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aluminide coatings are essential for protecting gas turbine hot-section components, but their longevity is often limited by the degradation of the protective β-NiAl phase. This study aims to elucidate the fundamental mechanisms driving β-NiAl degradation by comparing its behavior in aluminide coatings deposited on a nickel-based superalloy under isothermal oxidation (1100°C, air) and vacuum heat treatment (1100°C, vacuum) conditions. The results demonstrate conclusively that β-NiAl degradation is primarily caused by coating-substrate interdiffusion, which leads to Ni enrichment within the coating, rather than by Al depletion resulting from the formation of the surface oxide scale. Degradation was observed to initiate preferentially at the coating surface, the interface between coating sublayers, and the coating-substrate interface. Furthermore, thinner coatings exhibited accelerated β-NiAl degradation due to enhanced Ni enrichment resulting from shorter diffusion distances. These findings highlight the importance of managing diffusion processes to enhance coating performance and durability in high-temperature environments.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"251 \",\"pages\":\"Article 112946\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25002732\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25002732","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unraveling β-NiAl degradation in aluminide coatings: A comparative study of isothermal oxidation and vacuum heat treatment
Aluminide coatings are essential for protecting gas turbine hot-section components, but their longevity is often limited by the degradation of the protective β-NiAl phase. This study aims to elucidate the fundamental mechanisms driving β-NiAl degradation by comparing its behavior in aluminide coatings deposited on a nickel-based superalloy under isothermal oxidation (1100°C, air) and vacuum heat treatment (1100°C, vacuum) conditions. The results demonstrate conclusively that β-NiAl degradation is primarily caused by coating-substrate interdiffusion, which leads to Ni enrichment within the coating, rather than by Al depletion resulting from the formation of the surface oxide scale. Degradation was observed to initiate preferentially at the coating surface, the interface between coating sublayers, and the coating-substrate interface. Furthermore, thinner coatings exhibited accelerated β-NiAl degradation due to enhanced Ni enrichment resulting from shorter diffusion distances. These findings highlight the importance of managing diffusion processes to enhance coating performance and durability in high-temperature environments.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.