求解时间分数型FitzHugh-Nagumo方程的有限差分β-分数方法

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Majeed Ahmad Yousif , Dumitru Baleanu , Mohamed Abdelwahed , Shrooq Mohammed Azzo , Pshtiwan Othman Mohammed
{"title":"求解时间分数型FitzHugh-Nagumo方程的有限差分β-分数方法","authors":"Majeed Ahmad Yousif ,&nbsp;Dumitru Baleanu ,&nbsp;Mohamed Abdelwahed ,&nbsp;Shrooq Mohammed Azzo ,&nbsp;Pshtiwan Othman Mohammed","doi":"10.1016/j.aej.2025.04.035","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a numerical approach for addressing the time-fractional FitzHugh–Nagumo (TFFHN) equation, a key equation in physics. The method integrates <span><math><mi>β</mi></math></span>-fractional derivatives s with the finite difference technique. Stability analysis confirms that the proposed method is conditionally stable. Numerical experiments demonstrate its effectiveness, outperforming the cubic B-spline method regarding norm errors. The experimental order of convergence is also presented, highlighting the accuracy and efficiency of the approach, and emphasizing its potential for solving time-fractional differential equations across various physical applications.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"125 ","pages":"Pages 127-132"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite difference β-fractional approach for solving the time-fractional FitzHugh–Nagumo equation\",\"authors\":\"Majeed Ahmad Yousif ,&nbsp;Dumitru Baleanu ,&nbsp;Mohamed Abdelwahed ,&nbsp;Shrooq Mohammed Azzo ,&nbsp;Pshtiwan Othman Mohammed\",\"doi\":\"10.1016/j.aej.2025.04.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a numerical approach for addressing the time-fractional FitzHugh–Nagumo (TFFHN) equation, a key equation in physics. The method integrates <span><math><mi>β</mi></math></span>-fractional derivatives s with the finite difference technique. Stability analysis confirms that the proposed method is conditionally stable. Numerical experiments demonstrate its effectiveness, outperforming the cubic B-spline method regarding norm errors. The experimental order of convergence is also presented, highlighting the accuracy and efficiency of the approach, and emphasizing its potential for solving time-fractional differential equations across various physical applications.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"125 \",\"pages\":\"Pages 127-132\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005198\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005198","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解时间分数FitzHugh-Nagumo (TFFHN)方程的数值方法,这是物理学中的一个关键方程。该方法利用有限差分技术对β-分数阶导数进行积分。稳定性分析证实了该方法是条件稳定的。数值实验证明了该方法的有效性,在范数误差方面优于三次b样条法。还介绍了收敛的实验顺序,强调了该方法的准确性和效率,并强调了其在各种物理应用中求解时间分数阶微分方程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite difference β-fractional approach for solving the time-fractional FitzHugh–Nagumo equation
This study presents a numerical approach for addressing the time-fractional FitzHugh–Nagumo (TFFHN) equation, a key equation in physics. The method integrates β-fractional derivatives s with the finite difference technique. Stability analysis confirms that the proposed method is conditionally stable. Numerical experiments demonstrate its effectiveness, outperforming the cubic B-spline method regarding norm errors. The experimental order of convergence is also presented, highlighting the accuracy and efficiency of the approach, and emphasizing its potential for solving time-fractional differential equations across various physical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信