基于JETSCAPE的喷射淬火多观测贝叶斯推理分析

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Lipei Du , JETSCAPE Collaboration
{"title":"基于JETSCAPE的喷射淬火多观测贝叶斯推理分析","authors":"Lipei Du ,&nbsp;JETSCAPE Collaboration","doi":"10.1016/j.nuclphysa.2025.123100","DOIUrl":null,"url":null,"abstract":"<div><div>The <span>Jetscape</span> Collaboration presents a new determination of the jet transport parameter <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> in the Quark-Gluon Plasma (QGP) using Bayesian Inference. This study expands on previous work by incorporating a comprehensive data set from inclusive hadron and jet yield suppression measurements at RHIC and the LHC. Utilizing Active Learning and other machine-learning approaches for computational efficiency, the analysis efficiently explores the parameter space and studies systematic dependencies across various kinematic and centrality ranges. The results highlight tensions in the extracted <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> values across different data sets, providing deeper insights into the physics of jet transport in the QGP.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1060 ","pages":"Article 123100"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-observable analysis of jet quenching using Bayesian inference with JETSCAPE\",\"authors\":\"Lipei Du ,&nbsp;JETSCAPE Collaboration\",\"doi\":\"10.1016/j.nuclphysa.2025.123100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span>Jetscape</span> Collaboration presents a new determination of the jet transport parameter <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> in the Quark-Gluon Plasma (QGP) using Bayesian Inference. This study expands on previous work by incorporating a comprehensive data set from inclusive hadron and jet yield suppression measurements at RHIC and the LHC. Utilizing Active Learning and other machine-learning approaches for computational efficiency, the analysis efficiently explores the parameter space and studies systematic dependencies across various kinematic and centrality ranges. The results highlight tensions in the extracted <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> values across different data sets, providing deeper insights into the physics of jet transport in the QGP.</div></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1060 \",\"pages\":\"Article 123100\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947425000867\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947425000867","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

Jetscape协作提出了一种利用贝叶斯推断确定夸克-胶子等离子体(QGP)中射流输运参数q -的新方法。本研究通过整合RHIC和LHC强子和射流产量抑制测量的综合数据集,扩展了之前的工作。利用主动学习和其他机器学习方法来提高计算效率,该分析有效地探索了参数空间,并研究了各种运动和中心性范围内的系统依赖关系。结果突出了不同数据集中提取的q -值的张力,为QGP中射流传输的物理特性提供了更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-observable analysis of jet quenching using Bayesian inference with JETSCAPE
The Jetscape Collaboration presents a new determination of the jet transport parameter qˆ in the Quark-Gluon Plasma (QGP) using Bayesian Inference. This study expands on previous work by incorporating a comprehensive data set from inclusive hadron and jet yield suppression measurements at RHIC and the LHC. Utilizing Active Learning and other machine-learning approaches for computational efficiency, the analysis efficiently explores the parameter space and studies systematic dependencies across various kinematic and centrality ranges. The results highlight tensions in the extracted qˆ values across different data sets, providing deeper insights into the physics of jet transport in the QGP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信