Bozhen Chen , Haibin Ouyang , Steven Li , Liqun Gao , Weiping Ding
{"title":"光伏参数提取采用多元线性回归自适应差分进化算法","authors":"Bozhen Chen , Haibin Ouyang , Steven Li , Liqun Gao , Weiping Ding","doi":"10.1016/j.asoc.2025.113117","DOIUrl":null,"url":null,"abstract":"<div><div>Solar cells play a crucial role in generating clean, renewable energy. Accurate modeling of photovoltaic (PV) systems is essential for their development, and simulating their behaviors requires precise estimation of their parameters. However, many optimization methods exhibit high or unstable root mean square error (RMSE) due to local optima entrapment and parameter interdependence. To address these challenges, we propose MLR-DE, a novel hybrid approach that integrates adaptive differential evolution (DE) with multiple linear regression (MLR). The main innovation is to decompose the PV model into linear coefficients and non-linear functions, the latter being iteratively estimated using DE. By treating nonlinear function outputs as independent variables and known measured currents as dependent variables, linear coefficients are analytically solved through MLR. Additionally, we introduce a data-fusion-based parameter generation scheme to improve DE’s reliability by integrating historical crossover rates with estimated crossover rates. We validate MLR-DE through experiments across 11 PV configurations: 3 standard diode models and 8 environmental variants. The results demonstrate MLR-DE’s superiority in all tests. It achieves the lowest average RMSE compared to other algorithms, with standard deviations at or below 2e−16. In the Friedman test, MLR-DE ranked first with a score of 1.94, outperforming the second-place (3.72) and last-place (7.58) competitors. The convergence curve shows that MLR-DE achieves convergence in less than 3,000 function evaluations over standard models, with an average convergence time of less than 0.6 s.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"176 ","pages":"Article 113117"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic parameter extraction through an adaptive differential evolution algorithm with multiple linear regression\",\"authors\":\"Bozhen Chen , Haibin Ouyang , Steven Li , Liqun Gao , Weiping Ding\",\"doi\":\"10.1016/j.asoc.2025.113117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar cells play a crucial role in generating clean, renewable energy. Accurate modeling of photovoltaic (PV) systems is essential for their development, and simulating their behaviors requires precise estimation of their parameters. However, many optimization methods exhibit high or unstable root mean square error (RMSE) due to local optima entrapment and parameter interdependence. To address these challenges, we propose MLR-DE, a novel hybrid approach that integrates adaptive differential evolution (DE) with multiple linear regression (MLR). The main innovation is to decompose the PV model into linear coefficients and non-linear functions, the latter being iteratively estimated using DE. By treating nonlinear function outputs as independent variables and known measured currents as dependent variables, linear coefficients are analytically solved through MLR. Additionally, we introduce a data-fusion-based parameter generation scheme to improve DE’s reliability by integrating historical crossover rates with estimated crossover rates. We validate MLR-DE through experiments across 11 PV configurations: 3 standard diode models and 8 environmental variants. The results demonstrate MLR-DE’s superiority in all tests. It achieves the lowest average RMSE compared to other algorithms, with standard deviations at or below 2e−16. In the Friedman test, MLR-DE ranked first with a score of 1.94, outperforming the second-place (3.72) and last-place (7.58) competitors. The convergence curve shows that MLR-DE achieves convergence in less than 3,000 function evaluations over standard models, with an average convergence time of less than 0.6 s.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"176 \",\"pages\":\"Article 113117\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625004284\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625004284","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Photovoltaic parameter extraction through an adaptive differential evolution algorithm with multiple linear regression
Solar cells play a crucial role in generating clean, renewable energy. Accurate modeling of photovoltaic (PV) systems is essential for their development, and simulating their behaviors requires precise estimation of their parameters. However, many optimization methods exhibit high or unstable root mean square error (RMSE) due to local optima entrapment and parameter interdependence. To address these challenges, we propose MLR-DE, a novel hybrid approach that integrates adaptive differential evolution (DE) with multiple linear regression (MLR). The main innovation is to decompose the PV model into linear coefficients and non-linear functions, the latter being iteratively estimated using DE. By treating nonlinear function outputs as independent variables and known measured currents as dependent variables, linear coefficients are analytically solved through MLR. Additionally, we introduce a data-fusion-based parameter generation scheme to improve DE’s reliability by integrating historical crossover rates with estimated crossover rates. We validate MLR-DE through experiments across 11 PV configurations: 3 standard diode models and 8 environmental variants. The results demonstrate MLR-DE’s superiority in all tests. It achieves the lowest average RMSE compared to other algorithms, with standard deviations at or below 2e−16. In the Friedman test, MLR-DE ranked first with a score of 1.94, outperforming the second-place (3.72) and last-place (7.58) competitors. The convergence curve shows that MLR-DE achieves convergence in less than 3,000 function evaluations over standard models, with an average convergence time of less than 0.6 s.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.