非均匀加热作用下锥体内磁化纳米流体的水热分析

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Muhammad Aqib Aslam , Lele Yang , Xiaodong Chen , Hasan Shahzad , Ke Zhang
{"title":"非均匀加热作用下锥体内磁化纳米流体的水热分析","authors":"Muhammad Aqib Aslam ,&nbsp;Lele Yang ,&nbsp;Xiaodong Chen ,&nbsp;Hasan Shahzad ,&nbsp;Ke Zhang","doi":"10.1016/j.csite.2025.106105","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the heat transfer enhancement in a non-uniform magnetize nanofluid flow inside a pyramid shape cavity with hot circular obstacle. Non-uniform heating is applied at the bottom wall, and scaling is used to convert the governing equations into dimensionless form. The Computational Fluid Dynamics (CFD) approach is employed to solve the equations. Numerical results are presented through streamlines and isotherms. The Nusselt number (<em>Nu</em>) and entropy generation are calculated to assess heat transfer. Results show a 4.75 % decrease in heat transfer rate as the nanoparticle volume fraction (φ) varies from 0 to 0.04, and a further 6.31 % reduction as the Hartmann number (<em>Ha</em>) increases from 0 to 20. The Nusselt number for non-uniform heating amplitude <span><math><mrow><mi>I</mi></mrow></math></span> (from 0.5 to 0.9) displays a significant increase of up to 39 % as Hartmann number increases from 0 to 20, while showing an overall decrease of approximately 41 % across frequency (<span><math><mrow><mi>f</mi></mrow></math></span> = 0, 1 and 3) as the <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> increases from 0 to 100. Entropy generation decreases significantly, by approximately 67 % for <span><math><mrow><mi>φ</mi></mrow></math></span> (0–0.02), 59 % for <span><math><mrow><mi>I</mi></mrow></math></span> (0.05–1) and 57 % for <span><math><mrow><mi>f</mi></mrow></math></span> (0–3), as <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> increases from (0–100). Kinetic energy decreases for increasing frequency <span><math><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span>, Rayleigh number <span><math><mrow><mo>(</mo><mrow><mi>R</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span>, and inclination angle <span><math><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"70 ","pages":"Article 106105"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydro-thermal analysis of magnetize nanofluid inside pyramid shape enclosure under the effect of non-uniform heating\",\"authors\":\"Muhammad Aqib Aslam ,&nbsp;Lele Yang ,&nbsp;Xiaodong Chen ,&nbsp;Hasan Shahzad ,&nbsp;Ke Zhang\",\"doi\":\"10.1016/j.csite.2025.106105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the heat transfer enhancement in a non-uniform magnetize nanofluid flow inside a pyramid shape cavity with hot circular obstacle. Non-uniform heating is applied at the bottom wall, and scaling is used to convert the governing equations into dimensionless form. The Computational Fluid Dynamics (CFD) approach is employed to solve the equations. Numerical results are presented through streamlines and isotherms. The Nusselt number (<em>Nu</em>) and entropy generation are calculated to assess heat transfer. Results show a 4.75 % decrease in heat transfer rate as the nanoparticle volume fraction (φ) varies from 0 to 0.04, and a further 6.31 % reduction as the Hartmann number (<em>Ha</em>) increases from 0 to 20. The Nusselt number for non-uniform heating amplitude <span><math><mrow><mi>I</mi></mrow></math></span> (from 0.5 to 0.9) displays a significant increase of up to 39 % as Hartmann number increases from 0 to 20, while showing an overall decrease of approximately 41 % across frequency (<span><math><mrow><mi>f</mi></mrow></math></span> = 0, 1 and 3) as the <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> increases from 0 to 100. Entropy generation decreases significantly, by approximately 67 % for <span><math><mrow><mi>φ</mi></mrow></math></span> (0–0.02), 59 % for <span><math><mrow><mi>I</mi></mrow></math></span> (0.05–1) and 57 % for <span><math><mrow><mi>f</mi></mrow></math></span> (0–3), as <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> increases from (0–100). Kinetic energy decreases for increasing frequency <span><math><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span>, Rayleigh number <span><math><mrow><mo>(</mo><mrow><mi>R</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span>, and inclination angle <span><math><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></math></span>.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"70 \",\"pages\":\"Article 106105\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X2500365X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X2500365X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非均匀磁化纳米流体在具有热圆障碍物的锥形腔内流动时的传热增强。在底壁处施加非均匀加热,并采用标度法将控制方程转化为无因次形式。采用计算流体力学(CFD)方法求解。数值结果通过流线和等温线给出。计算努塞尔数(Nu)和熵产来评估传热。结果表明:当纳米颗粒体积分数(φ)在0 ~ 0.04范围内变化时,传热率降低4.75%;当哈特曼数(Ha)在0 ~ 20范围内增加时,传热率降低6.31%;当哈特曼数从0增加到20时,非均匀加热振幅I(从0.5到0.9)的努塞尔数显著增加了39%,而当Ha从0增加到100时,整个频率(f = 0,1和3)的努塞尔数总体下降了约41%。当Ha从(0-100)增加时,熵生成显著减少,φ(0-0.02)约为67%,I(0.05-1)约为59%,f(0-3)约为57%。动能随频率(f)、瑞利数(Ra)和倾角(γ)的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydro-thermal analysis of magnetize nanofluid inside pyramid shape enclosure under the effect of non-uniform heating
This study investigates the heat transfer enhancement in a non-uniform magnetize nanofluid flow inside a pyramid shape cavity with hot circular obstacle. Non-uniform heating is applied at the bottom wall, and scaling is used to convert the governing equations into dimensionless form. The Computational Fluid Dynamics (CFD) approach is employed to solve the equations. Numerical results are presented through streamlines and isotherms. The Nusselt number (Nu) and entropy generation are calculated to assess heat transfer. Results show a 4.75 % decrease in heat transfer rate as the nanoparticle volume fraction (φ) varies from 0 to 0.04, and a further 6.31 % reduction as the Hartmann number (Ha) increases from 0 to 20. The Nusselt number for non-uniform heating amplitude I (from 0.5 to 0.9) displays a significant increase of up to 39 % as Hartmann number increases from 0 to 20, while showing an overall decrease of approximately 41 % across frequency (f = 0, 1 and 3) as the Ha increases from 0 to 100. Entropy generation decreases significantly, by approximately 67 % for φ (0–0.02), 59 % for I (0.05–1) and 57 % for f (0–3), as Ha increases from (0–100). Kinetic energy decreases for increasing frequency (f), Rayleigh number (Ra), and inclination angle (γ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信