关于无奇轮图谱半径的更多结果

IF 0.7 3区 数学 Q2 MATHEMATICS
Wenqian Zhang
{"title":"关于无奇轮图谱半径的更多结果","authors":"Wenqian Zhang","doi":"10.1016/j.disc.2025.114550","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em>, the spectral radius <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the largest eigenvalue of its adjacency matrix. An odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> is a graph obtained from a cycle of order 2<em>k</em> by adding a new vertex connecting to all the vertices of the cycle. Let <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> be the set of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs of order <em>n</em> with the maximum spectral radius. Very recently, Cioabă, Desai and Tait <span><span>[4]</span></span> characterized the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for sufficiently large <em>n</em>, where <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≠</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. And they left the case <span><math><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span> as a problem. In this paper, we settle this problem. Moreover, we completely characterize the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> is even and <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mtext>mod</mtext><mspace></mspace></mrow><mn>4</mn><mo>)</mo></math></span> is sufficiently large. Consequently, the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> are characterized completely for any <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114550"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More results on the spectral radius of graphs with no odd wheels\",\"authors\":\"Wenqian Zhang\",\"doi\":\"10.1016/j.disc.2025.114550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <em>G</em>, the spectral radius <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the largest eigenvalue of its adjacency matrix. An odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> is a graph obtained from a cycle of order 2<em>k</em> by adding a new vertex connecting to all the vertices of the cycle. Let <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> be the set of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs of order <em>n</em> with the maximum spectral radius. Very recently, Cioabă, Desai and Tait <span><span>[4]</span></span> characterized the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for sufficiently large <em>n</em>, where <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≠</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. And they left the case <span><math><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span> as a problem. In this paper, we settle this problem. Moreover, we completely characterize the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> is even and <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mtext>mod</mtext><mspace></mspace></mrow><mn>4</mn><mo>)</mo></math></span> is sufficiently large. Consequently, the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> are characterized completely for any <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114550\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2500158X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500158X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图G, G的谱半径λ1(G)是其邻接矩阵的最大特征值。k≥2的奇轮W2k+1是在一个2k阶的循环中添加一个连接到该循环所有顶点的新顶点而得到的图。设SPEX(n,W2k+1)为最大谱半径的n阶无W2k+1图的集合。最近,cioabei, Desai和Tait[4]在足够大的n下,在SPEX(n,W2k+1)中刻画了k≥2且k≠4,5的图。题目把k=4,5的情况留作一个问题。本文解决了这一问题。此外,当k≥4为偶数且n≡2(mod4)足够大时,我们完全刻画了SPEX(n,W2k+1)中的图。因此,当k≥2且n足够大时,SPEX(n,W2k+1)中的图是完全表征的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More results on the spectral radius of graphs with no odd wheels
For a graph G, the spectral radius λ1(G) of G is the largest eigenvalue of its adjacency matrix. An odd wheel W2k+1 with k2 is a graph obtained from a cycle of order 2k by adding a new vertex connecting to all the vertices of the cycle. Let SPEX(n,W2k+1) be the set of W2k+1-free graphs of order n with the maximum spectral radius. Very recently, Cioabă, Desai and Tait [4] characterized the graphs in SPEX(n,W2k+1) for sufficiently large n, where k2 and k4,5. And they left the case k=4,5 as a problem. In this paper, we settle this problem. Moreover, we completely characterize the graphs in SPEX(n,W2k+1) when k4 is even and n2(mod4) is sufficiently large. Consequently, the graphs in SPEX(n,W2k+1) are characterized completely for any k2 and sufficiently large n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信