{"title":"外域上若干非线性特征值问题的正解","authors":"Bilel Khamessi , Noureddine Zeddini","doi":"10.1016/j.jmaa.2025.129562","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we give a characterization that enables us to redefine the Kato class of potential functions <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, on an exterior domain <em>D</em> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>-boundary, studied in <span><span>[11]</span></span>. Next, we consider a class of semilinear elliptic system of type <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mspace></mspace><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>, <span><math><mi>Δ</mi><mi>v</mi><mo>=</mo><mi>μ</mi><mspace></mspace><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>, for some nonnegative nonlinearities <em>F</em> and <em>H</em> and positive constants <em>λ</em> and <em>μ</em>. Under adequate conditions on <em>F</em> and <em>H</em>, related to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, we prove the existence of positive solutions continuous on <span><math><mover><mrow><mi>D</mi></mrow><mo>‾</mo></mover></math></span>, for <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> and <span><math><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> for some <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span>, whenever some conditions on the finite boundary and the infinite boundary are given.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129562"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive solutions of some nonlinear eigenvalue problems in exterior domains\",\"authors\":\"Bilel Khamessi , Noureddine Zeddini\",\"doi\":\"10.1016/j.jmaa.2025.129562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we give a characterization that enables us to redefine the Kato class of potential functions <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, on an exterior domain <em>D</em> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>-boundary, studied in <span><span>[11]</span></span>. Next, we consider a class of semilinear elliptic system of type <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mspace></mspace><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>, <span><math><mi>Δ</mi><mi>v</mi><mo>=</mo><mi>μ</mi><mspace></mspace><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>, for some nonnegative nonlinearities <em>F</em> and <em>H</em> and positive constants <em>λ</em> and <em>μ</em>. Under adequate conditions on <em>F</em> and <em>H</em>, related to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, we prove the existence of positive solutions continuous on <span><math><mover><mrow><mi>D</mi></mrow><mo>‾</mo></mover></math></span>, for <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> and <span><math><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> for some <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span>, whenever some conditions on the finite boundary and the infinite boundary are given.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129562\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003439\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003439","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive solutions of some nonlinear eigenvalue problems in exterior domains
In this paper, we give a characterization that enables us to redefine the Kato class of potential functions , on an exterior domain D with -boundary, studied in [11]. Next, we consider a class of semilinear elliptic system of type , , for some nonnegative nonlinearities F and H and positive constants λ and μ. Under adequate conditions on F and H, related to , we prove the existence of positive solutions continuous on , for and for some , whenever some conditions on the finite boundary and the infinite boundary are given.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.