CMS RPC非物理事件数据自动化思想

IF 1.5 3区 物理与天体物理 Q3 INSTRUMENTS & INSTRUMENTATION
A. Dimitrov , M. Tytgat , K. Mota Amarilo , A. Samalan , K. Skovpen , G.A. Alves , E. Alves Coelho , F. Marujo da Silva , M. Barroso Ferreira Filho , E.M. Da Costa , D. De Jesus Damiao , S. Fonseca De Souza , R. Gomes De Souza , L. Mundim , H. Nogima , J.P. Pinheiro , A. Santoro , M. Thiel , A. Aleksandrov , R. Hadjiiska , J. Eysermans
{"title":"CMS RPC非物理事件数据自动化思想","authors":"A. Dimitrov ,&nbsp;M. Tytgat ,&nbsp;K. Mota Amarilo ,&nbsp;A. Samalan ,&nbsp;K. Skovpen ,&nbsp;G.A. Alves ,&nbsp;E. Alves Coelho ,&nbsp;F. Marujo da Silva ,&nbsp;M. Barroso Ferreira Filho ,&nbsp;E.M. Da Costa ,&nbsp;D. De Jesus Damiao ,&nbsp;S. Fonseca De Souza ,&nbsp;R. Gomes De Souza ,&nbsp;L. Mundim ,&nbsp;H. Nogima ,&nbsp;J.P. Pinheiro ,&nbsp;A. Santoro ,&nbsp;M. Thiel ,&nbsp;A. Aleksandrov ,&nbsp;R. Hadjiiska ,&nbsp;J. Eysermans","doi":"10.1016/j.nima.2025.170506","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a streamlined framework for real-time processing and analysis of condition data from the CMS experiment Resistive Plate Chambers (RPC). Leveraging data streaming, it uncovers correlations between RPC performance metrics, like currents and rates, and LHC luminosity or environmental conditions. The Java-based framework automates data handling and predictive modeling, integrating extensive datasets into synchronized, query-optimized tables. By segmenting LHC operations and analyzing larger virtual detector objects, the automation enhances monitoring precision, accelerates visualization, and provides predictive insights, revolutionizing RPC performance evaluation and future behavior modeling.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1076 ","pages":"Article 170506"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMS RPC non-physics event data automation ideology\",\"authors\":\"A. Dimitrov ,&nbsp;M. Tytgat ,&nbsp;K. Mota Amarilo ,&nbsp;A. Samalan ,&nbsp;K. Skovpen ,&nbsp;G.A. Alves ,&nbsp;E. Alves Coelho ,&nbsp;F. Marujo da Silva ,&nbsp;M. Barroso Ferreira Filho ,&nbsp;E.M. Da Costa ,&nbsp;D. De Jesus Damiao ,&nbsp;S. Fonseca De Souza ,&nbsp;R. Gomes De Souza ,&nbsp;L. Mundim ,&nbsp;H. Nogima ,&nbsp;J.P. Pinheiro ,&nbsp;A. Santoro ,&nbsp;M. Thiel ,&nbsp;A. Aleksandrov ,&nbsp;R. Hadjiiska ,&nbsp;J. Eysermans\",\"doi\":\"10.1016/j.nima.2025.170506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a streamlined framework for real-time processing and analysis of condition data from the CMS experiment Resistive Plate Chambers (RPC). Leveraging data streaming, it uncovers correlations between RPC performance metrics, like currents and rates, and LHC luminosity or environmental conditions. The Java-based framework automates data handling and predictive modeling, integrating extensive datasets into synchronized, query-optimized tables. By segmenting LHC operations and analyzing larger virtual detector objects, the automation enhances monitoring precision, accelerates visualization, and provides predictive insights, revolutionizing RPC performance evaluation and future behavior modeling.</div></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":\"1076 \",\"pages\":\"Article 170506\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168900225003079\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900225003079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个简化框架,用于实时处理和分析来自 CMS 实验电阻板室(RPC)的状态数据。它利用数据流,发现了 RPC 性能指标(如电流和速率)与大型强子对撞机光度或环境条件之间的相关性。这个基于 Java 的框架能自动进行数据处理和预测建模,将大量数据集整合到同步、查询优化的表格中。通过细分大型强子对撞机的运行和分析更大的虚拟探测器对象,自动化提高了监测精度,加快了可视化速度,并提供了预测性洞察力,彻底改变了 RPC 性能评估和未来行为建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMS RPC non-physics event data automation ideology
This paper presents a streamlined framework for real-time processing and analysis of condition data from the CMS experiment Resistive Plate Chambers (RPC). Leveraging data streaming, it uncovers correlations between RPC performance metrics, like currents and rates, and LHC luminosity or environmental conditions. The Java-based framework automates data handling and predictive modeling, integrating extensive datasets into synchronized, query-optimized tables. By segmenting LHC operations and analyzing larger virtual detector objects, the automation enhances monitoring precision, accelerates visualization, and provides predictive insights, revolutionizing RPC performance evaluation and future behavior modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
21.40%
发文量
787
审稿时长
1 months
期刊介绍: Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section. Theoretical as well as experimental papers are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信