David Spressão de Lima Junior , Ilana Sessak , Daniela Remonatto , Julián Paul Martínez Galán , Murilo Daniel de Mello Innocentini , Ariela Veloso de Paula , Daniela Alonso Bocchini
{"title":"在 3D 打印聚(乳酸)载体上共价固定葡萄糖淀粉酶,用于搅拌罐反应器中的淀粉水解","authors":"David Spressão de Lima Junior , Ilana Sessak , Daniela Remonatto , Julián Paul Martínez Galán , Murilo Daniel de Mello Innocentini , Ariela Veloso de Paula , Daniela Alonso Bocchini","doi":"10.1016/j.procbio.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel 3D-printed poly(lactic acid) (PLA) carrier for the covalent immobilization of a commercial glucoamylase. Enzyme carriers were functionalized by aminolysis with ethylenediamine (EDA) and activated with glutaraldehyde. Since covalent immobilization using glutaraldehyde as activating agent involves the formation of imine bonds which are inherently unstable, the use of borohydride as a reducing agent to stabilize these imine bonds after the functionalization step was considered. The highest enzymatic activity (13.68 U g<sup>−1</sup> carrier) was obtained when immobilization was performed at pH 10 using NaBH<sub>4</sub> (immobilization yield of 32.80 % ± 0.51 %). Optimal activity conditions were pH 4.92 and 50 °C for the soluble enzyme and pH 5.5 and 50 °C for the immobilized enzyme. The operational stability of immobilized glucoamylase was evaluated for 10 consecutive reaction cycles (of 10 minutes each) and the enzyme maintained 65.19 % of its original activity at the end of the third cycle. Starch saccharification in a stirred tank reactor by immobilized glucoamylase reached 95 % conversion after 12 h and 74 % conversion after 12 h in the first reuse cycle. These findings demonstrate the potential of PLA for glucoamylase immobilization, offering promising prospects for efficient and sustainable starch hydrolysis in industrial enzymatic processes.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"154 ","pages":"Pages 52-62"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent immobilization of glucoamylase on 3D-printed poly(lactic acid) carriers for starch hydrolysis in stirred tank reactor\",\"authors\":\"David Spressão de Lima Junior , Ilana Sessak , Daniela Remonatto , Julián Paul Martínez Galán , Murilo Daniel de Mello Innocentini , Ariela Veloso de Paula , Daniela Alonso Bocchini\",\"doi\":\"10.1016/j.procbio.2025.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel 3D-printed poly(lactic acid) (PLA) carrier for the covalent immobilization of a commercial glucoamylase. Enzyme carriers were functionalized by aminolysis with ethylenediamine (EDA) and activated with glutaraldehyde. Since covalent immobilization using glutaraldehyde as activating agent involves the formation of imine bonds which are inherently unstable, the use of borohydride as a reducing agent to stabilize these imine bonds after the functionalization step was considered. The highest enzymatic activity (13.68 U g<sup>−1</sup> carrier) was obtained when immobilization was performed at pH 10 using NaBH<sub>4</sub> (immobilization yield of 32.80 % ± 0.51 %). Optimal activity conditions were pH 4.92 and 50 °C for the soluble enzyme and pH 5.5 and 50 °C for the immobilized enzyme. The operational stability of immobilized glucoamylase was evaluated for 10 consecutive reaction cycles (of 10 minutes each) and the enzyme maintained 65.19 % of its original activity at the end of the third cycle. Starch saccharification in a stirred tank reactor by immobilized glucoamylase reached 95 % conversion after 12 h and 74 % conversion after 12 h in the first reuse cycle. These findings demonstrate the potential of PLA for glucoamylase immobilization, offering promising prospects for efficient and sustainable starch hydrolysis in industrial enzymatic processes.</div></div>\",\"PeriodicalId\":20811,\"journal\":{\"name\":\"Process Biochemistry\",\"volume\":\"154 \",\"pages\":\"Pages 52-62\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359511325001084\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359511325001084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Covalent immobilization of glucoamylase on 3D-printed poly(lactic acid) carriers for starch hydrolysis in stirred tank reactor
This study presents a novel 3D-printed poly(lactic acid) (PLA) carrier for the covalent immobilization of a commercial glucoamylase. Enzyme carriers were functionalized by aminolysis with ethylenediamine (EDA) and activated with glutaraldehyde. Since covalent immobilization using glutaraldehyde as activating agent involves the formation of imine bonds which are inherently unstable, the use of borohydride as a reducing agent to stabilize these imine bonds after the functionalization step was considered. The highest enzymatic activity (13.68 U g−1 carrier) was obtained when immobilization was performed at pH 10 using NaBH4 (immobilization yield of 32.80 % ± 0.51 %). Optimal activity conditions were pH 4.92 and 50 °C for the soluble enzyme and pH 5.5 and 50 °C for the immobilized enzyme. The operational stability of immobilized glucoamylase was evaluated for 10 consecutive reaction cycles (of 10 minutes each) and the enzyme maintained 65.19 % of its original activity at the end of the third cycle. Starch saccharification in a stirred tank reactor by immobilized glucoamylase reached 95 % conversion after 12 h and 74 % conversion after 12 h in the first reuse cycle. These findings demonstrate the potential of PLA for glucoamylase immobilization, offering promising prospects for efficient and sustainable starch hydrolysis in industrial enzymatic processes.
期刊介绍:
Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.