吲哚-7-甲醛功能化纳米银和纳米金作为新型金属有机激光限功率复合材料

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shradha Lakhera , Meenakshi Rana , A. Dhanusha , T.C. Sabari Girisun , Shruti Sharma , Papia Chowdhury
{"title":"吲哚-7-甲醛功能化纳米银和纳米金作为新型金属有机激光限功率复合材料","authors":"Shradha Lakhera ,&nbsp;Meenakshi Rana ,&nbsp;A. Dhanusha ,&nbsp;T.C. Sabari Girisun ,&nbsp;Shruti Sharma ,&nbsp;Papia Chowdhury","doi":"10.1016/j.photonics.2025.101386","DOIUrl":null,"url":null,"abstract":"<div><div>Efforts were done to enhance the nonlinear optical and optical power limiting responses of Indole-7-carboxaldehyde (I7C) after the addition of silver and gold nanoparticles. The investigations were done theoretically as well as experimentally. The reactivity parameters and potential surfaces established strong intermolecular charge interactions between metal trimer and I7C. The diffraction pattern for both I7C+AgNPs and I7C+AuNPs indicated the perfect crystallinity of the samples. The band gap of I7C+AgNPs (2.08 eV) was less than that of I7C+AuNPs (2.34 eV). The polarizability of I7C was enhanced after the addition of gold and silver nanoparticles. The value of first-order hyperpolarizability of probe I7C was observed as 4.24 × 10<sup>−30</sup> esu which was increased to ten times for I7C+AgNPs and eighteen times for I7C+AuNPs. The increased value of first-order hyperpolarizability supported enhanced nonlinear optical characteristics of I7C+AgNPs and I7C+AuNPs. Further, the reduction in experimentally obtained optical limiting threshold and increment in the nonlinear absorption coefficient reflects early attenuation of the nonlinear optical and enhanced optical limiting activity of I7C+AgNPs and I7C+AuNPs.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101386"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indole-7-carboxaldehyde functionalized silver and gold nanoparticles as novel metal-organic laser power limiting composites\",\"authors\":\"Shradha Lakhera ,&nbsp;Meenakshi Rana ,&nbsp;A. Dhanusha ,&nbsp;T.C. Sabari Girisun ,&nbsp;Shruti Sharma ,&nbsp;Papia Chowdhury\",\"doi\":\"10.1016/j.photonics.2025.101386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efforts were done to enhance the nonlinear optical and optical power limiting responses of Indole-7-carboxaldehyde (I7C) after the addition of silver and gold nanoparticles. The investigations were done theoretically as well as experimentally. The reactivity parameters and potential surfaces established strong intermolecular charge interactions between metal trimer and I7C. The diffraction pattern for both I7C+AgNPs and I7C+AuNPs indicated the perfect crystallinity of the samples. The band gap of I7C+AgNPs (2.08 eV) was less than that of I7C+AuNPs (2.34 eV). The polarizability of I7C was enhanced after the addition of gold and silver nanoparticles. The value of first-order hyperpolarizability of probe I7C was observed as 4.24 × 10<sup>−30</sup> esu which was increased to ten times for I7C+AgNPs and eighteen times for I7C+AuNPs. The increased value of first-order hyperpolarizability supported enhanced nonlinear optical characteristics of I7C+AgNPs and I7C+AuNPs. Further, the reduction in experimentally obtained optical limiting threshold and increment in the nonlinear absorption coefficient reflects early attenuation of the nonlinear optical and enhanced optical limiting activity of I7C+AgNPs and I7C+AuNPs.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"64 \",\"pages\":\"Article 101386\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441025000367\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000367","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了加入纳米银和纳米金后,吲哚-7-甲醛(I7C)的非线性光学响应和光功率限制响应。这些研究既有理论上的,也有实验上的。反应性参数和电位表面表明金属三聚体与I7C之间存在很强的分子间电荷相互作用。I7C+AgNPs和I7C+AuNPs的衍射图表明样品具有良好的结晶度。I7C+AgNPs的带隙(2.08 eV)小于I7C+AuNPs(2.34 eV)。金纳米粒子和银纳米粒子的加入增强了I7C的极化率。探针I7C的一阶超极化率为4.24 × 10−30 esu, I7C+AgNPs为10倍,I7C+AuNPs为18倍。一阶超极化率的增加支持I7C+AgNPs和I7C+AuNPs非线性光学特性的增强。此外,实验得到的光学限制阈值的降低和非线性吸收系数的增加反映了I7C+AgNPs和I7C+AuNPs的非线性光学早期衰减和光学限制活性的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indole-7-carboxaldehyde functionalized silver and gold nanoparticles as novel metal-organic laser power limiting composites
Efforts were done to enhance the nonlinear optical and optical power limiting responses of Indole-7-carboxaldehyde (I7C) after the addition of silver and gold nanoparticles. The investigations were done theoretically as well as experimentally. The reactivity parameters and potential surfaces established strong intermolecular charge interactions between metal trimer and I7C. The diffraction pattern for both I7C+AgNPs and I7C+AuNPs indicated the perfect crystallinity of the samples. The band gap of I7C+AgNPs (2.08 eV) was less than that of I7C+AuNPs (2.34 eV). The polarizability of I7C was enhanced after the addition of gold and silver nanoparticles. The value of first-order hyperpolarizability of probe I7C was observed as 4.24 × 10−30 esu which was increased to ten times for I7C+AgNPs and eighteen times for I7C+AuNPs. The increased value of first-order hyperpolarizability supported enhanced nonlinear optical characteristics of I7C+AgNPs and I7C+AuNPs. Further, the reduction in experimentally obtained optical limiting threshold and increment in the nonlinear absorption coefficient reflects early attenuation of the nonlinear optical and enhanced optical limiting activity of I7C+AgNPs and I7C+AuNPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信