Xin-yuan Zhao , Xun Zhang , Hao-tian Yu , Yan Liu , Si-ping Pang , Chun-lin He
{"title":"作为高热稳定性高能生物杀灭材料的全碘桥接吡咯","authors":"Xin-yuan Zhao , Xun Zhang , Hao-tian Yu , Yan Liu , Si-ping Pang , Chun-lin He","doi":"10.1016/j.enmf.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Pyrrole is one of the important versatile skeletons for functional materials, fully-substituted pyrroles can achieve multiple substitutions. But, spatial site resistance effects make its synthesis difficult. In this work, a series of fully-iodinated bridged pyrroles (compounds <strong>8</strong>–<strong>13</strong>) as energetic biocidal compounds were synthesized through two-step. They show high iodine content of 82.98 %–88.02 %, and high thermal stability (<em>T</em><sub>d</sub>: 267–344 °C) which is a significantly improved compared to 2,3,4,5-tetraiodo-1H-pyrrole (TIPL, <em>T</em><sub>d</sub>: 168 °C). Furthermore, good detonation pressure (<em>P</em>) and detonation velocity (<em>D</em>) were realized, showing great prospective for applications as potential energetic biocidal materials.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"6 1","pages":"Pages 67-73"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully-iodinated bridged pyrroles as high thermostable energetic biocidal materials\",\"authors\":\"Xin-yuan Zhao , Xun Zhang , Hao-tian Yu , Yan Liu , Si-ping Pang , Chun-lin He\",\"doi\":\"10.1016/j.enmf.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pyrrole is one of the important versatile skeletons for functional materials, fully-substituted pyrroles can achieve multiple substitutions. But, spatial site resistance effects make its synthesis difficult. In this work, a series of fully-iodinated bridged pyrroles (compounds <strong>8</strong>–<strong>13</strong>) as energetic biocidal compounds were synthesized through two-step. They show high iodine content of 82.98 %–88.02 %, and high thermal stability (<em>T</em><sub>d</sub>: 267–344 °C) which is a significantly improved compared to 2,3,4,5-tetraiodo-1H-pyrrole (TIPL, <em>T</em><sub>d</sub>: 168 °C). Furthermore, good detonation pressure (<em>P</em>) and detonation velocity (<em>D</em>) were realized, showing great prospective for applications as potential energetic biocidal materials.</div></div>\",\"PeriodicalId\":34595,\"journal\":{\"name\":\"Energetic Materials Frontiers\",\"volume\":\"6 1\",\"pages\":\"Pages 67-73\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetic Materials Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666647225000119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666647225000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fully-iodinated bridged pyrroles as high thermostable energetic biocidal materials
Pyrrole is one of the important versatile skeletons for functional materials, fully-substituted pyrroles can achieve multiple substitutions. But, spatial site resistance effects make its synthesis difficult. In this work, a series of fully-iodinated bridged pyrroles (compounds 8–13) as energetic biocidal compounds were synthesized through two-step. They show high iodine content of 82.98 %–88.02 %, and high thermal stability (Td: 267–344 °C) which is a significantly improved compared to 2,3,4,5-tetraiodo-1H-pyrrole (TIPL, Td: 168 °C). Furthermore, good detonation pressure (P) and detonation velocity (D) were realized, showing great prospective for applications as potential energetic biocidal materials.