基于Ag₂MgSnS₄光活性吸收剂的高性能钙钛矿太阳能电池的先进建模和阻抗谱分析

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
George G. Njema , Abderrahmane Elmelouky , Nicholas Rono , Edson L. Meyer , Joshua K. Kibet
{"title":"基于Ag₂MgSnS₄光活性吸收剂的高性能钙钛矿太阳能电池的先进建模和阻抗谱分析","authors":"George G. Njema ,&nbsp;Abderrahmane Elmelouky ,&nbsp;Nicholas Rono ,&nbsp;Edson L. Meyer ,&nbsp;Joshua K. Kibet","doi":"10.1016/j.materresbull.2025.113488","DOIUrl":null,"url":null,"abstract":"<div><div>The major challenge in the photovoltaic technology has been to understand device physics at interfaces, stability, and potential toxicity. Herein, we conduct a comprehensive numerical evaluation of a novel lead-free environmentally friendly solar cell architecture, ITO/AZO/Ag₂MgSnS<sub>4</sub>/PEDOT:PSS/Fe, using the SCAPS-1D device simulator. Ag₂MgSnS₄ exhibits robust stability, excellent optoelectronic properties, and therefore a promising material in the photovoltaic technology. Thorough the analysis of alternating current characteristics of complex impedance (Z*) and complex modulus (M*) in the frequency range 10⁻³–10¹² Hz, ionic migration phenomena at interfaces, which has been difficult to understand in solar cell structures was evaluated. This model cell was rigorously validated through the determination of relaxation times, activation energies at interfaces and series resistance analysis. The device achieved power conversion efficiency (PCE) of 25.82 %, an impressive short-circuit current density (J<sub>sc</sub>) of 24.22 mA/cm², an open-circuit voltage (V<sub>oc</sub>) of 1.3030 V, and a remarkable fill factor (FF) of 81.82 %.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113488"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced modeling and impedance spectroscopy analysis of a high performance perovskite solar cell based on Ag₂MgSnS₄ photoactive absorber\",\"authors\":\"George G. Njema ,&nbsp;Abderrahmane Elmelouky ,&nbsp;Nicholas Rono ,&nbsp;Edson L. Meyer ,&nbsp;Joshua K. Kibet\",\"doi\":\"10.1016/j.materresbull.2025.113488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The major challenge in the photovoltaic technology has been to understand device physics at interfaces, stability, and potential toxicity. Herein, we conduct a comprehensive numerical evaluation of a novel lead-free environmentally friendly solar cell architecture, ITO/AZO/Ag₂MgSnS<sub>4</sub>/PEDOT:PSS/Fe, using the SCAPS-1D device simulator. Ag₂MgSnS₄ exhibits robust stability, excellent optoelectronic properties, and therefore a promising material in the photovoltaic technology. Thorough the analysis of alternating current characteristics of complex impedance (Z*) and complex modulus (M*) in the frequency range 10⁻³–10¹² Hz, ionic migration phenomena at interfaces, which has been difficult to understand in solar cell structures was evaluated. This model cell was rigorously validated through the determination of relaxation times, activation energies at interfaces and series resistance analysis. The device achieved power conversion efficiency (PCE) of 25.82 %, an impressive short-circuit current density (J<sub>sc</sub>) of 24.22 mA/cm², an open-circuit voltage (V<sub>oc</sub>) of 1.3030 V, and a remarkable fill factor (FF) of 81.82 %.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"190 \",\"pages\":\"Article 113488\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825001965\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825001965","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光伏技术的主要挑战是了解器件在界面、稳定性和潜在毒性方面的物理特性。本文利用SCAPS-1D器件模拟器对新型无铅环保太阳能电池结构ITO/AZO/Ag₂MgSnS4/PEDOT:PSS/Fe进行了全面的数值评估。Ag₂MgSnS₄具有稳定的稳定性和优异的光电性能,因此在光伏技术中是一种很有前途的材料。通过对复阻抗(Z*)和复模量(M*)在10⁻³-10¹²Hz频率范围内的交流特性的分析,评价了太阳能电池结构中一直难以理解的界面离子迁移现象。通过弛豫时间、界面活化能和串联电阻分析,对模型电池进行了严格验证。该器件的功率转换效率(PCE)为25.82%,短路电流密度(Jsc)为24.22 mA/cm²,开路电压(Voc)为1.3030 V,填充系数(FF)为81.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced modeling and impedance spectroscopy analysis of a high performance perovskite solar cell based on Ag₂MgSnS₄ photoactive absorber

Advanced modeling and impedance spectroscopy analysis of a high performance perovskite solar cell based on Ag₂MgSnS₄ photoactive absorber
The major challenge in the photovoltaic technology has been to understand device physics at interfaces, stability, and potential toxicity. Herein, we conduct a comprehensive numerical evaluation of a novel lead-free environmentally friendly solar cell architecture, ITO/AZO/Ag₂MgSnS4/PEDOT:PSS/Fe, using the SCAPS-1D device simulator. Ag₂MgSnS₄ exhibits robust stability, excellent optoelectronic properties, and therefore a promising material in the photovoltaic technology. Thorough the analysis of alternating current characteristics of complex impedance (Z*) and complex modulus (M*) in the frequency range 10⁻³–10¹² Hz, ionic migration phenomena at interfaces, which has been difficult to understand in solar cell structures was evaluated. This model cell was rigorously validated through the determination of relaxation times, activation energies at interfaces and series resistance analysis. The device achieved power conversion efficiency (PCE) of 25.82 %, an impressive short-circuit current density (Jsc) of 24.22 mA/cm², an open-circuit voltage (Voc) of 1.3030 V, and a remarkable fill factor (FF) of 81.82 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信