利用纳米颗粒相变材料和附片的集成光伏热系统的数值分析

Q1 Chemical Engineering
Kosar Parach , Bahram Jafari , Khashayar Hosseinzadeh
{"title":"利用纳米颗粒相变材料和附片的集成光伏热系统的数值分析","authors":"Kosar Parach ,&nbsp;Bahram Jafari ,&nbsp;Khashayar Hosseinzadeh","doi":"10.1016/j.ijft.2025.101210","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a three-dimensional photovoltaic thermal /phase change material (PVT/PCM) model is numerically assessed to evaluate the impact of using a variable number of rectangular fins on the system's efficiency. Specifically, PVT/PCM assemblies with 5, 10, 15, and 20 fins, alongside vane heights of 0.15, 0.4, 0.65, and 0.9 (expressed as the ratio <em>h/H</em>), were examined using a 6 % MWCNT nanofluid coolant. A novel aspect of this research is the investigation of the cooling process's response to flow conditions ranging from laminar to turbulent. The charging and solidification processes of PCM are modeled using a method that combines enthalpy and porosity considerations. Furthermore, a pressure-dependent finite volume method with a transient solver has been employed to perform the computational fluid dynamics (CFD) analysis of the relevant equations. The numerical results show that the utilization of rectangular fins in the PCM region reduces both the average photovoltaic temperature and the coolant outlet temperature while at the same time increasing the melting fraction of the PCM. Specifically, a fin with an h/H ratio of 0.9 outperforms the 0.65 h/H configuration by 8.8 %, the 0.4 h/H setup by 32.4 %, and significantly surpasses the 0.15 h/H arrangement by 70.2 %. In terms of electrical efficiency, the PVT/PCM system achieves its peak at a blade-to-channel height ratio (<em>h/H</em>) of 0.9 and a blade count (<em>N</em>) of 5, corresponding to a Reynolds number of 5000, with a peak efficiency recorded at 13.524 %.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101210"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of integrated photovoltaic thermal systems utilizing nanoparticles with phase change material and fin attachments\",\"authors\":\"Kosar Parach ,&nbsp;Bahram Jafari ,&nbsp;Khashayar Hosseinzadeh\",\"doi\":\"10.1016/j.ijft.2025.101210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a three-dimensional photovoltaic thermal /phase change material (PVT/PCM) model is numerically assessed to evaluate the impact of using a variable number of rectangular fins on the system's efficiency. Specifically, PVT/PCM assemblies with 5, 10, 15, and 20 fins, alongside vane heights of 0.15, 0.4, 0.65, and 0.9 (expressed as the ratio <em>h/H</em>), were examined using a 6 % MWCNT nanofluid coolant. A novel aspect of this research is the investigation of the cooling process's response to flow conditions ranging from laminar to turbulent. The charging and solidification processes of PCM are modeled using a method that combines enthalpy and porosity considerations. Furthermore, a pressure-dependent finite volume method with a transient solver has been employed to perform the computational fluid dynamics (CFD) analysis of the relevant equations. The numerical results show that the utilization of rectangular fins in the PCM region reduces both the average photovoltaic temperature and the coolant outlet temperature while at the same time increasing the melting fraction of the PCM. Specifically, a fin with an h/H ratio of 0.9 outperforms the 0.65 h/H configuration by 8.8 %, the 0.4 h/H setup by 32.4 %, and significantly surpasses the 0.15 h/H arrangement by 70.2 %. In terms of electrical efficiency, the PVT/PCM system achieves its peak at a blade-to-channel height ratio (<em>h/H</em>) of 0.9 and a blade count (<em>N</em>) of 5, corresponding to a Reynolds number of 5000, with a peak efficiency recorded at 13.524 %.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"27 \",\"pages\":\"Article 101210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725001570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,对三维光伏热/相变材料(PVT/PCM)模型进行了数值评估,以评估使用可变数量的矩形翅片对系统效率的影响。具体来说,PVT/PCM组件有5、10、15和20个翅片,叶片高度分别为0.15、0.4、0.65和0.9(以h/ h的比率表示),使用6% MWCNT纳米流体冷却剂进行了测试。本研究的一个新颖方面是研究冷却过程对从层流到湍流的流动条件的响应。采用结合焓和孔隙率的方法对PCM的充注和凝固过程进行了建模。在此基础上,采用压力相关有限体积法和瞬态求解器对相关方程进行了计算流体力学分析。数值计算结果表明,矩形翅片在PCM区域的应用降低了平均光伏温度和冷却剂出口温度,同时提高了PCM的熔化率。具体来说,h/ h比为0.9的翅片比0.65 h/ h的配置性能高出8.8%,比0.4 h/ h的配置性能高出32.4%,比0.15 h/ h的配置性能高出70.2%。在电效率方面,PVT/PCM系统在叶片与通道高度比(h/ h)为0.9,叶片数(N)为5时达到峰值,对应于雷诺数为5000,峰值效率为13.524%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of integrated photovoltaic thermal systems utilizing nanoparticles with phase change material and fin attachments
In this study, a three-dimensional photovoltaic thermal /phase change material (PVT/PCM) model is numerically assessed to evaluate the impact of using a variable number of rectangular fins on the system's efficiency. Specifically, PVT/PCM assemblies with 5, 10, 15, and 20 fins, alongside vane heights of 0.15, 0.4, 0.65, and 0.9 (expressed as the ratio h/H), were examined using a 6 % MWCNT nanofluid coolant. A novel aspect of this research is the investigation of the cooling process's response to flow conditions ranging from laminar to turbulent. The charging and solidification processes of PCM are modeled using a method that combines enthalpy and porosity considerations. Furthermore, a pressure-dependent finite volume method with a transient solver has been employed to perform the computational fluid dynamics (CFD) analysis of the relevant equations. The numerical results show that the utilization of rectangular fins in the PCM region reduces both the average photovoltaic temperature and the coolant outlet temperature while at the same time increasing the melting fraction of the PCM. Specifically, a fin with an h/H ratio of 0.9 outperforms the 0.65 h/H configuration by 8.8 %, the 0.4 h/H setup by 32.4 %, and significantly surpasses the 0.15 h/H arrangement by 70.2 %. In terms of electrical efficiency, the PVT/PCM system achieves its peak at a blade-to-channel height ratio (h/H) of 0.9 and a blade count (N) of 5, corresponding to a Reynolds number of 5000, with a peak efficiency recorded at 13.524 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信