{"title":"平均场博弈均衡的约束保持神经网络方法","authors":"Jinwei Liu , Lu Ren , Wang Yao , Xiao Zhang","doi":"10.1016/j.aop.2025.170027","DOIUrl":null,"url":null,"abstract":"<div><div>Neural network-based methods have demonstrated effectiveness in solving high-dimensional Mean-Field Games (MFG) equilibria, yet ensuring mathematically consistent density-coupled evolution remains a major challenge. This paper proposes the NF-MKV Net, a neural network approach that integrates process-regularized normalizing flow (NF) with state-policy-connected time-series neural networks to solve MKV FBSDEs and their associated fixed-point formulations of MFG equilibria. The method first reformulates MFG equilibria as MKV FBSDEs, embedding density evolution into the equation coefficients within a probabilistic framework. Neural networks are then employed to approximate value functions and their gradients. To enforce volumetric invariance and temporal continuity, NF architectures impose loss constraints on each density transfer function. Theoretical analysis establishes the algorithm’s validity, while numerical experiments across various scenarios including traffic flow, crowd motion, and obstacle avoidance, demonstrate its capability in maintaining density consistency and temporal smoothness.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"478 ","pages":"Article 170027"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A constraint-preserving neural network approach for mean-field games equilibria\",\"authors\":\"Jinwei Liu , Lu Ren , Wang Yao , Xiao Zhang\",\"doi\":\"10.1016/j.aop.2025.170027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neural network-based methods have demonstrated effectiveness in solving high-dimensional Mean-Field Games (MFG) equilibria, yet ensuring mathematically consistent density-coupled evolution remains a major challenge. This paper proposes the NF-MKV Net, a neural network approach that integrates process-regularized normalizing flow (NF) with state-policy-connected time-series neural networks to solve MKV FBSDEs and their associated fixed-point formulations of MFG equilibria. The method first reformulates MFG equilibria as MKV FBSDEs, embedding density evolution into the equation coefficients within a probabilistic framework. Neural networks are then employed to approximate value functions and their gradients. To enforce volumetric invariance and temporal continuity, NF architectures impose loss constraints on each density transfer function. Theoretical analysis establishes the algorithm’s validity, while numerical experiments across various scenarios including traffic flow, crowd motion, and obstacle avoidance, demonstrate its capability in maintaining density consistency and temporal smoothness.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"478 \",\"pages\":\"Article 170027\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491625001083\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625001083","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A constraint-preserving neural network approach for mean-field games equilibria
Neural network-based methods have demonstrated effectiveness in solving high-dimensional Mean-Field Games (MFG) equilibria, yet ensuring mathematically consistent density-coupled evolution remains a major challenge. This paper proposes the NF-MKV Net, a neural network approach that integrates process-regularized normalizing flow (NF) with state-policy-connected time-series neural networks to solve MKV FBSDEs and their associated fixed-point formulations of MFG equilibria. The method first reformulates MFG equilibria as MKV FBSDEs, embedding density evolution into the equation coefficients within a probabilistic framework. Neural networks are then employed to approximate value functions and their gradients. To enforce volumetric invariance and temporal continuity, NF architectures impose loss constraints on each density transfer function. Theoretical analysis establishes the algorithm’s validity, while numerical experiments across various scenarios including traffic flow, crowd motion, and obstacle avoidance, demonstrate its capability in maintaining density consistency and temporal smoothness.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.