无电解质钾离子嵌入二维层状金属氧化物模拟时空生物神经动力学

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gichang Noh , Jeongho Kim , Dong Yeon Woo , Min-gyu Kim , Hyeri Yoo , Han Beom Jeong , Yooyeon Jo , Eunpyo Park , Dae Kyu Lee , Min Jee Kim , Min-kyung Jo , In Soo Kim , Talip Serkan Kasirga , Dong Han Ha , Soo Young Kim , Gyu Weon Hwang , Sangtae Kim , Chul-Ho Lee , Heejun Yang , Hu Young Jeong , Joon Young Kwak
{"title":"无电解质钾离子嵌入二维层状金属氧化物模拟时空生物神经动力学","authors":"Gichang Noh ,&nbsp;Jeongho Kim ,&nbsp;Dong Yeon Woo ,&nbsp;Min-gyu Kim ,&nbsp;Hyeri Yoo ,&nbsp;Han Beom Jeong ,&nbsp;Yooyeon Jo ,&nbsp;Eunpyo Park ,&nbsp;Dae Kyu Lee ,&nbsp;Min Jee Kim ,&nbsp;Min-kyung Jo ,&nbsp;In Soo Kim ,&nbsp;Talip Serkan Kasirga ,&nbsp;Dong Han Ha ,&nbsp;Soo Young Kim ,&nbsp;Gyu Weon Hwang ,&nbsp;Sangtae Kim ,&nbsp;Chul-Ho Lee ,&nbsp;Heejun Yang ,&nbsp;Hu Young Jeong ,&nbsp;Joon Young Kwak","doi":"10.1016/j.mattod.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>Alkali ions are crucial to physiological neural activities and their dynamics can be implemented in various iontronics. For the host materials for alkali ions, 2D layered materials have become the preferred choice thanks to their facilitating ion accommodation and movement between layers. Nevertheless, challenges such as the need for external electrolytes, pre-fabrication for ion intercalation, and thermodynamic stability during ion movements still persist. Consequently, the comprehensive understanding of the electrical dynamics associated with alkali ion movement has rarely been demonstrated in 2D layered materials so far. Here, we engineered an electrolyte-free high-crystalline 2D layered MnO<sub>2</sub> nanoplate with potassium ions by metal–organic chemical vapor deposition. The combination of potassium ions and layered MnO<sub>2</sub> exhibits electrically induced ion migration coupled with a subsequent phase transition, resulting in negative differential resistance. Furthermore, the material’s distinct hybrid plasticity, driven by its ion dynamics, provides a sophisticated platform for sequential motion recognition, valuable for assessing continuous motion across varied subjects. Finally, we demonstrate the broad applicability of our 2D K-MnO<sub>2</sub> and highlight its versatility in spatiotemporal ion modulation within three-terminal structures, showing potential for future advancements.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"85 ","pages":"Pages 27-38"},"PeriodicalIF":21.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte-free potassium ions intercalated in 2D layered metal oxide for imitating spatiotemporal biological neural dynamics\",\"authors\":\"Gichang Noh ,&nbsp;Jeongho Kim ,&nbsp;Dong Yeon Woo ,&nbsp;Min-gyu Kim ,&nbsp;Hyeri Yoo ,&nbsp;Han Beom Jeong ,&nbsp;Yooyeon Jo ,&nbsp;Eunpyo Park ,&nbsp;Dae Kyu Lee ,&nbsp;Min Jee Kim ,&nbsp;Min-kyung Jo ,&nbsp;In Soo Kim ,&nbsp;Talip Serkan Kasirga ,&nbsp;Dong Han Ha ,&nbsp;Soo Young Kim ,&nbsp;Gyu Weon Hwang ,&nbsp;Sangtae Kim ,&nbsp;Chul-Ho Lee ,&nbsp;Heejun Yang ,&nbsp;Hu Young Jeong ,&nbsp;Joon Young Kwak\",\"doi\":\"10.1016/j.mattod.2025.02.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alkali ions are crucial to physiological neural activities and their dynamics can be implemented in various iontronics. For the host materials for alkali ions, 2D layered materials have become the preferred choice thanks to their facilitating ion accommodation and movement between layers. Nevertheless, challenges such as the need for external electrolytes, pre-fabrication for ion intercalation, and thermodynamic stability during ion movements still persist. Consequently, the comprehensive understanding of the electrical dynamics associated with alkali ion movement has rarely been demonstrated in 2D layered materials so far. Here, we engineered an electrolyte-free high-crystalline 2D layered MnO<sub>2</sub> nanoplate with potassium ions by metal–organic chemical vapor deposition. The combination of potassium ions and layered MnO<sub>2</sub> exhibits electrically induced ion migration coupled with a subsequent phase transition, resulting in negative differential resistance. Furthermore, the material’s distinct hybrid plasticity, driven by its ion dynamics, provides a sophisticated platform for sequential motion recognition, valuable for assessing continuous motion across varied subjects. Finally, we demonstrate the broad applicability of our 2D K-MnO<sub>2</sub> and highlight its versatility in spatiotemporal ion modulation within three-terminal structures, showing potential for future advancements.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"85 \",\"pages\":\"Pages 27-38\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702125000537\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125000537","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碱离子在生理神经活动中起着至关重要的作用,它们的动力学可以在各种电子中实现。对于碱离子的宿主材料,二维层状材料由于其易于离子在层间的调节和移动而成为首选。然而,诸如外部电解质的需求、离子嵌入的预制以及离子运动过程中的热力学稳定性等挑战仍然存在。因此,到目前为止,对与碱离子运动相关的电动力学的全面理解很少在二维层状材料中得到证明。本文采用金属有机化学气相沉积的方法制备了一种含钾离子的无电解质高结晶二维层状二氧化锰纳米板。钾离子和层状二氧化锰的结合表现出电诱导离子迁移以及随后的相变,导致负差分电阻。此外,由离子动力学驱动的材料独特的混合可塑性为连续运动识别提供了一个复杂的平台,对评估不同主体的连续运动很有价值。最后,我们展示了2D K-MnO2的广泛适用性,并强调了其在三端结构中时空离子调制的多功能性,显示了未来发展的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrolyte-free potassium ions intercalated in 2D layered metal oxide for imitating spatiotemporal biological neural dynamics

Electrolyte-free potassium ions intercalated in 2D layered metal oxide for imitating spatiotemporal biological neural dynamics
Alkali ions are crucial to physiological neural activities and their dynamics can be implemented in various iontronics. For the host materials for alkali ions, 2D layered materials have become the preferred choice thanks to their facilitating ion accommodation and movement between layers. Nevertheless, challenges such as the need for external electrolytes, pre-fabrication for ion intercalation, and thermodynamic stability during ion movements still persist. Consequently, the comprehensive understanding of the electrical dynamics associated with alkali ion movement has rarely been demonstrated in 2D layered materials so far. Here, we engineered an electrolyte-free high-crystalline 2D layered MnO2 nanoplate with potassium ions by metal–organic chemical vapor deposition. The combination of potassium ions and layered MnO2 exhibits electrically induced ion migration coupled with a subsequent phase transition, resulting in negative differential resistance. Furthermore, the material’s distinct hybrid plasticity, driven by its ion dynamics, provides a sophisticated platform for sequential motion recognition, valuable for assessing continuous motion across varied subjects. Finally, we demonstrate the broad applicability of our 2D K-MnO2 and highlight its versatility in spatiotemporal ion modulation within three-terminal structures, showing potential for future advancements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信