模拟热解碳的结构、纳米结构和结构的系统三维量化

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Raphaëlle David , Jean-Marc Leyssale , Yongfeng Zhang
{"title":"模拟热解碳的结构、纳米结构和结构的系统三维量化","authors":"Raphaëlle David ,&nbsp;Jean-Marc Leyssale ,&nbsp;Yongfeng Zhang","doi":"10.1016/j.carbon.2025.120312","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately characterizing a material is essential for understanding its microstructure-property correlations. Carbons with turbostratic structures hold significant technological importance. However, fully characterizing their complex microstructures remains a challenge that hinders the development of crucial structure-property relationships. In this work, we propose a consistent framework for describing the microstructure of graphenic carbons based on a single atomic-scale parameter, the atomic orientation (<span><math><mrow><mover><mrow><mi>A</mi><mi>O</mi></mrow><mo>→</mo></mover></mrow></math></span>). Utilizing <span><math><mrow><mover><mrow><mi>A</mi><mi>O</mi></mrow><mo>→</mo></mover></mrow></math></span> and its spatial correlation, we quantify the 3D microstructure using a set of descriptors, including a structural feature, <em>i.e.</em>, the interlayer distance (<span><math><mrow><msub><mi>d</mi><mn>002</mn></msub></mrow></math></span>), nanotextural features, <em>i.e.</em>, the crystallite sizes (<span><math><mrow><msub><mi>L</mi><mi>a</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub></mrow></math></span>), and textural features, <em>i.e.</em>, the anisotropy factor (<span><math><mrow><msub><mi>ξ</mi><mrow><mi>A</mi><mi>F</mi></mrow></msub></mrow></math></span>), the average misorientation angle between crystallites (<span><math><mrow><msub><mi>ϕ</mi><mi>∞</mi></msub></mrow></math></span>), and a 3D atomic equivalent of the opening angle (<span><math><mrow><mi>O</mi><msub><mi>A</mi><mrow><mn>3</mn><mi>D</mi></mrow></msub></mrow></math></span>). The proposed descriptors are applied to three sets of atomistic pyrolytic carbon (PyC) models to demonstrate their ability to discriminate and quantify the microstructure of PyCs with various accuracy and texture levels. Notably, the introduced textural parameters (<span><math><mrow><msub><mi>ξ</mi><mrow><mi>A</mi><mi>F</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>ϕ</mi><mi>∞</mi></msub></mrow></math></span>, <span><math><mrow><mi>O</mi><msub><mi>A</mi><mrow><mn>3</mn><mi>D</mi></mrow></msub></mrow></math></span>) extend texture quantification from 2D to 3D, allowing for accurate quantification of PyCs with a broad range of texture.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"239 ","pages":"Article 120312"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic 3D quantification of structure, nanotexture, and texture of simulated pyrolytic carbons\",\"authors\":\"Raphaëlle David ,&nbsp;Jean-Marc Leyssale ,&nbsp;Yongfeng Zhang\",\"doi\":\"10.1016/j.carbon.2025.120312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately characterizing a material is essential for understanding its microstructure-property correlations. Carbons with turbostratic structures hold significant technological importance. However, fully characterizing their complex microstructures remains a challenge that hinders the development of crucial structure-property relationships. In this work, we propose a consistent framework for describing the microstructure of graphenic carbons based on a single atomic-scale parameter, the atomic orientation (<span><math><mrow><mover><mrow><mi>A</mi><mi>O</mi></mrow><mo>→</mo></mover></mrow></math></span>). Utilizing <span><math><mrow><mover><mrow><mi>A</mi><mi>O</mi></mrow><mo>→</mo></mover></mrow></math></span> and its spatial correlation, we quantify the 3D microstructure using a set of descriptors, including a structural feature, <em>i.e.</em>, the interlayer distance (<span><math><mrow><msub><mi>d</mi><mn>002</mn></msub></mrow></math></span>), nanotextural features, <em>i.e.</em>, the crystallite sizes (<span><math><mrow><msub><mi>L</mi><mi>a</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub></mrow></math></span>), and textural features, <em>i.e.</em>, the anisotropy factor (<span><math><mrow><msub><mi>ξ</mi><mrow><mi>A</mi><mi>F</mi></mrow></msub></mrow></math></span>), the average misorientation angle between crystallites (<span><math><mrow><msub><mi>ϕ</mi><mi>∞</mi></msub></mrow></math></span>), and a 3D atomic equivalent of the opening angle (<span><math><mrow><mi>O</mi><msub><mi>A</mi><mrow><mn>3</mn><mi>D</mi></mrow></msub></mrow></math></span>). The proposed descriptors are applied to three sets of atomistic pyrolytic carbon (PyC) models to demonstrate their ability to discriminate and quantify the microstructure of PyCs with various accuracy and texture levels. Notably, the introduced textural parameters (<span><math><mrow><msub><mi>ξ</mi><mrow><mi>A</mi><mi>F</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>ϕ</mi><mi>∞</mi></msub></mrow></math></span>, <span><math><mrow><mi>O</mi><msub><mi>A</mi><mrow><mn>3</mn><mi>D</mi></mrow></msub></mrow></math></span>) extend texture quantification from 2D to 3D, allowing for accurate quantification of PyCs with a broad range of texture.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"239 \",\"pages\":\"Article 120312\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325003288\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325003288","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确描述一种材料的特性对于了解其微观结构与性能之间的相关性至关重要。具有湍流结构的碳具有重要的技术意义。然而,全面表征其复杂的微观结构仍然是一项挑战,这阻碍了关键的结构-性能关系的发展。在这项工作中,我们提出了一个基于单一原子尺度参数--原子取向(AO→)--描述石墨烯碳微观结构的一致框架。利用 AO→ 及其空间相关性,我们使用一组描述符对三维微观结构进行了量化,其中包括结构特征,即层间距离(d002)、纳米结构特征,即结晶尺寸(La 和 S)、原子取向(AO→)和空间相关性、晶粒尺寸(La 和 Lc)和纹理特征,即各向异性因子 (ξAF)、晶粒间的平均错向角 (ϕ∞) 和开口角的三维原子等效值 (OA3D)。我们将所提出的描述符应用于三组原子热解碳(PyC)模型,以证明它们能够以不同的精度和纹理水平区分和量化 PyC 的微观结构。值得注意的是,引入的纹理参数(ξAF、ϕ∞、OA3D)将纹理量化从二维扩展到了三维,从而可以对具有广泛纹理范围的 PyCs 进行精确量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Systematic 3D quantification of structure, nanotexture, and texture of simulated pyrolytic carbons

Systematic 3D quantification of structure, nanotexture, and texture of simulated pyrolytic carbons
Accurately characterizing a material is essential for understanding its microstructure-property correlations. Carbons with turbostratic structures hold significant technological importance. However, fully characterizing their complex microstructures remains a challenge that hinders the development of crucial structure-property relationships. In this work, we propose a consistent framework for describing the microstructure of graphenic carbons based on a single atomic-scale parameter, the atomic orientation (AO). Utilizing AO and its spatial correlation, we quantify the 3D microstructure using a set of descriptors, including a structural feature, i.e., the interlayer distance (d002), nanotextural features, i.e., the crystallite sizes (La and Lc), and textural features, i.e., the anisotropy factor (ξAF), the average misorientation angle between crystallites (ϕ), and a 3D atomic equivalent of the opening angle (OA3D). The proposed descriptors are applied to three sets of atomistic pyrolytic carbon (PyC) models to demonstrate their ability to discriminate and quantify the microstructure of PyCs with various accuracy and texture levels. Notably, the introduced textural parameters (ξAF, ϕ, OA3D) extend texture quantification from 2D to 3D, allowing for accurate quantification of PyCs with a broad range of texture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信