Xilong QIAN , Sicheng WU , Liu ZHOU , Zheng LIU , Yanqiong PAN , Xiangsong MENG , YuLu MA , Fang FANG , Kewei WANG , Jing ZHAO , Shengjin LIU
{"title":"用ATR - FTIR和ICP - MS表征美伐尼坦及其与健康相关的研究","authors":"Xilong QIAN , Sicheng WU , Liu ZHOU , Zheng LIU , Yanqiong PAN , Xiangsong MENG , YuLu MA , Fang FANG , Kewei WANG , Jing ZHAO , Shengjin LIU","doi":"10.1016/j.cjac.2025.100529","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous rise of consumers' material and physical health pursuit, it is particularly critical to evaluate the safety and effectiveness of natural healthy mineral materials such as Maifanitum. The progress of modern analytical technology enables us to deeply study the internal characteristics and mechanism of these traditional mineral materials, providing a solid scientific foundation and technical support for the application of Maifanitum. A comprehensive analysis of Maifanitum was conducted using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and inductively coupled plasma mass spectrometry (ICP-MS). The ATR-FTIR analysis established a quality control fingerprint for Maifanitum, and the similarity evaluation method was employed to assess the similarity between different samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) analysis revealed distinct absorption peaks among Maifanitum samples from different production areas, enabling traceability and identification. ICP-MS technology was utilized to analyze the inorganic elements in Maifanitum, revealing numerous elements closely associated with human health. These findings indicate that the established ATR-FTIR fingerprint can be effectively used to identify and control the quality of Maifanitum. The characteristics of inorganic elements in Maifanitum can not only help to distinguish its sources, but also provide a theoretical basis for the current application of Maifanitum in health care.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 6","pages":"Article 100529"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and Health - related Study of Maifanitum by ATR - FTIR and ICP - MS\",\"authors\":\"Xilong QIAN , Sicheng WU , Liu ZHOU , Zheng LIU , Yanqiong PAN , Xiangsong MENG , YuLu MA , Fang FANG , Kewei WANG , Jing ZHAO , Shengjin LIU\",\"doi\":\"10.1016/j.cjac.2025.100529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the continuous rise of consumers' material and physical health pursuit, it is particularly critical to evaluate the safety and effectiveness of natural healthy mineral materials such as Maifanitum. The progress of modern analytical technology enables us to deeply study the internal characteristics and mechanism of these traditional mineral materials, providing a solid scientific foundation and technical support for the application of Maifanitum. A comprehensive analysis of Maifanitum was conducted using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and inductively coupled plasma mass spectrometry (ICP-MS). The ATR-FTIR analysis established a quality control fingerprint for Maifanitum, and the similarity evaluation method was employed to assess the similarity between different samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) analysis revealed distinct absorption peaks among Maifanitum samples from different production areas, enabling traceability and identification. ICP-MS technology was utilized to analyze the inorganic elements in Maifanitum, revealing numerous elements closely associated with human health. These findings indicate that the established ATR-FTIR fingerprint can be effectively used to identify and control the quality of Maifanitum. The characteristics of inorganic elements in Maifanitum can not only help to distinguish its sources, but also provide a theoretical basis for the current application of Maifanitum in health care.</div></div>\",\"PeriodicalId\":277,\"journal\":{\"name\":\"Chinese Journal of Analytical Chemistry\",\"volume\":\"53 6\",\"pages\":\"Article 100529\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872204025000398\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872204025000398","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Characterization and Health - related Study of Maifanitum by ATR - FTIR and ICP - MS
With the continuous rise of consumers' material and physical health pursuit, it is particularly critical to evaluate the safety and effectiveness of natural healthy mineral materials such as Maifanitum. The progress of modern analytical technology enables us to deeply study the internal characteristics and mechanism of these traditional mineral materials, providing a solid scientific foundation and technical support for the application of Maifanitum. A comprehensive analysis of Maifanitum was conducted using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and inductively coupled plasma mass spectrometry (ICP-MS). The ATR-FTIR analysis established a quality control fingerprint for Maifanitum, and the similarity evaluation method was employed to assess the similarity between different samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) analysis revealed distinct absorption peaks among Maifanitum samples from different production areas, enabling traceability and identification. ICP-MS technology was utilized to analyze the inorganic elements in Maifanitum, revealing numerous elements closely associated with human health. These findings indicate that the established ATR-FTIR fingerprint can be effectively used to identify and control the quality of Maifanitum. The characteristics of inorganic elements in Maifanitum can not only help to distinguish its sources, but also provide a theoretical basis for the current application of Maifanitum in health care.
期刊介绍:
Chinese Journal of Analytical Chemistry(CJAC) is an academic journal of analytical chemistry established in 1972 and sponsored by the Chinese Chemical Society and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Its objectives are to report the original scientific research achievements and review the recent development of analytical chemistry in all areas. The journal sets up 5 columns including Research Papers, Research Notes, Experimental Technique and Instrument, Review and Progress and Summary Accounts. The journal published monthly in Chinese language. A detailed abstract, keywords and the titles of figures and tables are provided in English, except column of Summary Accounts. Prof. Wang Erkang, an outstanding analytical chemist, academician of Chinese Academy of Sciences & Third World Academy of Sciences, holds the post of the Editor-in-chief.