利用大数据阐明重金属纳米颗粒对废水处理厌氧氨氧化过程的影响

IF 8.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Yiqun Hong , Zhenguo Chen , Zehua Huang , Chunying Zheng , Junxing Liu , Chenxi Zeng , Xiangfa Kong , Chao Zhang , Mingzhi Huang
{"title":"利用大数据阐明重金属纳米颗粒对废水处理厌氧氨氧化过程的影响","authors":"Yiqun Hong ,&nbsp;Zhenguo Chen ,&nbsp;Zehua Huang ,&nbsp;Chunying Zheng ,&nbsp;Junxing Liu ,&nbsp;Chenxi Zeng ,&nbsp;Xiangfa Kong ,&nbsp;Chao Zhang ,&nbsp;Mingzhi Huang","doi":"10.1016/j.jenvman.2025.125243","DOIUrl":null,"url":null,"abstract":"<div><div>Anammox is a highly efficient nitrogen removal process, yet the effects of metal/metal-oxide nanoparticles (M/MONPs) on these systems remain underexplored. This study investigates the impact of various M/MONPs on the nitrogen removal rate (NRR). Pearson correlation analysis and statistical evaluation indicates that silver and copper oxide nanoparticles exhibit the highest inhibitory effect, with an inhibition rate of 83.4 % and 73.7 %, respectively. Furthermore, Machine learning models, particularly extreme gradient boost (XGBoost), demonstrate superior performance, with R<sup>2</sup> values exceeding 0.91. SHapley Additive exPlanations (SHAP) feature importance analysis highlighted nanoparticles concentration, influent ammonia nitrogen concentration as the most influential factors. Additionally, Partial Dependence Plots (PDP) analysis of key features provided further clarity on the optimal ranges for these critical variables. The present study provides a novel predictive methodology and optimization strategies for enhancing the NRR of anammox system under M/MONPs stress, informed by comprehensive big data analysis.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"382 ","pages":"Article 125243"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging big data to elucidate the impact of heavy metal nanoparticles on anammox processes in wastewater treatment\",\"authors\":\"Yiqun Hong ,&nbsp;Zhenguo Chen ,&nbsp;Zehua Huang ,&nbsp;Chunying Zheng ,&nbsp;Junxing Liu ,&nbsp;Chenxi Zeng ,&nbsp;Xiangfa Kong ,&nbsp;Chao Zhang ,&nbsp;Mingzhi Huang\",\"doi\":\"10.1016/j.jenvman.2025.125243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anammox is a highly efficient nitrogen removal process, yet the effects of metal/metal-oxide nanoparticles (M/MONPs) on these systems remain underexplored. This study investigates the impact of various M/MONPs on the nitrogen removal rate (NRR). Pearson correlation analysis and statistical evaluation indicates that silver and copper oxide nanoparticles exhibit the highest inhibitory effect, with an inhibition rate of 83.4 % and 73.7 %, respectively. Furthermore, Machine learning models, particularly extreme gradient boost (XGBoost), demonstrate superior performance, with R<sup>2</sup> values exceeding 0.91. SHapley Additive exPlanations (SHAP) feature importance analysis highlighted nanoparticles concentration, influent ammonia nitrogen concentration as the most influential factors. Additionally, Partial Dependence Plots (PDP) analysis of key features provided further clarity on the optimal ranges for these critical variables. The present study provides a novel predictive methodology and optimization strategies for enhancing the NRR of anammox system under M/MONPs stress, informed by comprehensive big data analysis.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"382 \",\"pages\":\"Article 125243\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479725012198\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725012198","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

厌氧氨氧化是一种高效的脱氮工艺,但金属/金属氧化物纳米颗粒(M/MONPs)对这些系统的影响仍未得到充分研究。本研究考察了不同M/MONPs对氮去除率的影响。Pearson相关分析和统计评价表明,氧化银和氧化铜纳米颗粒的抑制效果最好,抑制率分别为83.4%和73.7%。此外,机器学习模型,特别是极端梯度boost (XGBoost),表现出优越的性能,R2值超过0.91。SHapley加性解释(SHAP)特征重要性分析强调纳米颗粒浓度、进水氨氮浓度是影响最大的因素。此外,关键特征的部分依赖图(PDP)分析进一步明确了这些关键变量的最佳范围。本研究在综合大数据分析的基础上,为提高M/MONPs胁迫下厌氧氨氧化系统的NRR提供了一种新的预测方法和优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging big data to elucidate the impact of heavy metal nanoparticles on anammox processes in wastewater treatment

Leveraging big data to elucidate the impact of heavy metal nanoparticles on anammox processes in wastewater treatment
Anammox is a highly efficient nitrogen removal process, yet the effects of metal/metal-oxide nanoparticles (M/MONPs) on these systems remain underexplored. This study investigates the impact of various M/MONPs on the nitrogen removal rate (NRR). Pearson correlation analysis and statistical evaluation indicates that silver and copper oxide nanoparticles exhibit the highest inhibitory effect, with an inhibition rate of 83.4 % and 73.7 %, respectively. Furthermore, Machine learning models, particularly extreme gradient boost (XGBoost), demonstrate superior performance, with R2 values exceeding 0.91. SHapley Additive exPlanations (SHAP) feature importance analysis highlighted nanoparticles concentration, influent ammonia nitrogen concentration as the most influential factors. Additionally, Partial Dependence Plots (PDP) analysis of key features provided further clarity on the optimal ranges for these critical variables. The present study provides a novel predictive methodology and optimization strategies for enhancing the NRR of anammox system under M/MONPs stress, informed by comprehensive big data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信