Samira Munkaila, Kevin J. Torres, Jennifer Wang and Marcus Weck*,
{"title":"自定义胶体三聚体的介电泳组装","authors":"Samira Munkaila, Kevin J. Torres, Jennifer Wang and Marcus Weck*, ","doi":"10.1021/acsnanoscienceau.5c0000710.1021/acsnanoscienceau.5c00007","DOIUrl":null,"url":null,"abstract":"<p >The controlled assembly of colloidal trimers with both shape and surface anisotropy remains a challenge. In this work, polymeric dielectric colloidal trimers selectively functionalized with gold nanoparticles are used to create four distinct particles. The shape and surface anisotropy provided by the metallodielectric particles allows for directive assembly in a dielectrophoretic field. When subjected to varied frequencies and media permittivities, the particles assemble with different packing densities and orientations. On-demand assembly and disassembly of the particles are achieved by switching on or off the applied voltage. These multicomponent colloidal particles and their subsequent assemblies presented here provide a promising platform for engineering complex structures with versatile functionalities.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"100–110 100–110"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.5c00007","citationCount":"0","resultStr":"{\"title\":\"Dielectrophoretic Assembly of Customized Colloidal Trimers\",\"authors\":\"Samira Munkaila, Kevin J. Torres, Jennifer Wang and Marcus Weck*, \",\"doi\":\"10.1021/acsnanoscienceau.5c0000710.1021/acsnanoscienceau.5c00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The controlled assembly of colloidal trimers with both shape and surface anisotropy remains a challenge. In this work, polymeric dielectric colloidal trimers selectively functionalized with gold nanoparticles are used to create four distinct particles. The shape and surface anisotropy provided by the metallodielectric particles allows for directive assembly in a dielectrophoretic field. When subjected to varied frequencies and media permittivities, the particles assemble with different packing densities and orientations. On-demand assembly and disassembly of the particles are achieved by switching on or off the applied voltage. These multicomponent colloidal particles and their subsequent assemblies presented here provide a promising platform for engineering complex structures with versatile functionalities.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"5 2\",\"pages\":\"100–110 100–110\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.5c00007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Dielectrophoretic Assembly of Customized Colloidal Trimers
The controlled assembly of colloidal trimers with both shape and surface anisotropy remains a challenge. In this work, polymeric dielectric colloidal trimers selectively functionalized with gold nanoparticles are used to create four distinct particles. The shape and surface anisotropy provided by the metallodielectric particles allows for directive assembly in a dielectrophoretic field. When subjected to varied frequencies and media permittivities, the particles assemble with different packing densities and orientations. On-demand assembly and disassembly of the particles are achieved by switching on or off the applied voltage. These multicomponent colloidal particles and their subsequent assemblies presented here provide a promising platform for engineering complex structures with versatile functionalities.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.