功能衬底上的超薄VO2薄膜

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Juan Andres Hofer*, Ali C. Basaran, Alexandre Pofelski, Tianxing Damir Wang, Victor Palin, Yimei Zhu and Ivan K. Schuller, 
{"title":"功能衬底上的超薄VO2薄膜","authors":"Juan Andres Hofer*,&nbsp;Ali C. Basaran,&nbsp;Alexandre Pofelski,&nbsp;Tianxing Damir Wang,&nbsp;Victor Palin,&nbsp;Yimei Zhu and Ivan K. Schuller,&nbsp;","doi":"10.1021/acsami.5c0268210.1021/acsami.5c02682","DOIUrl":null,"url":null,"abstract":"<p >The metal–insulator transition (MIT) in vanadium dioxide (VO<sub>2</sub>) thin films is strongly affected by grain size, thickness, and interfacial properties. Typically, a minimum thickness around 50 nm is required for VO<sub>2</sub> to exhibit a significant MIT when functional substrates like sapphire and silicon are used. Several works have shown that thin films below 20 nm, with up to 2–3 decades of change in the resistance across the MIT, can be achieved but require complex pre- or postprocessing of the samples. We show that predeposition substrate condition control facilitates the direct growth of VO<sub>2</sub> ultrathin 15 nm films, exhibiting a resistance change between 3 and 4 decades across the MIT. Our findings indicate that the interface between the film and the substrate is crucial in determining the initial growth layers and the structural evolution. With appropriate substrate surface treatment, the desired VO<sub>2</sub> MIT can be enhanced regardless of the substrate crystallographic orientation. Moreover, we propose a novel approach to obtain large resistance changes across the MIT in ultrathin VO<sub>2</sub> films by incorporating a predeposited 1.5 nm vanadium oxide buffer layer, thereby eliminating the need to use different materials or complex pre- or postprocessing of the samples. We also demonstrate that this method improves the transition of 25–50 nm VO<sub>2</sub> thin films on silicon substrates. Our study reveals a simple approach for direct growth of ultrathin VO<sub>2</sub> films exhibiting a significant MIT, which is commonly accepted unattainable over substrates of technological importance, such as sapphire and silicon.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 15","pages":"22992–23002 22992–23002"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin VO2 Films on Functional Substrates\",\"authors\":\"Juan Andres Hofer*,&nbsp;Ali C. Basaran,&nbsp;Alexandre Pofelski,&nbsp;Tianxing Damir Wang,&nbsp;Victor Palin,&nbsp;Yimei Zhu and Ivan K. Schuller,&nbsp;\",\"doi\":\"10.1021/acsami.5c0268210.1021/acsami.5c02682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The metal–insulator transition (MIT) in vanadium dioxide (VO<sub>2</sub>) thin films is strongly affected by grain size, thickness, and interfacial properties. Typically, a minimum thickness around 50 nm is required for VO<sub>2</sub> to exhibit a significant MIT when functional substrates like sapphire and silicon are used. Several works have shown that thin films below 20 nm, with up to 2–3 decades of change in the resistance across the MIT, can be achieved but require complex pre- or postprocessing of the samples. We show that predeposition substrate condition control facilitates the direct growth of VO<sub>2</sub> ultrathin 15 nm films, exhibiting a resistance change between 3 and 4 decades across the MIT. Our findings indicate that the interface between the film and the substrate is crucial in determining the initial growth layers and the structural evolution. With appropriate substrate surface treatment, the desired VO<sub>2</sub> MIT can be enhanced regardless of the substrate crystallographic orientation. Moreover, we propose a novel approach to obtain large resistance changes across the MIT in ultrathin VO<sub>2</sub> films by incorporating a predeposited 1.5 nm vanadium oxide buffer layer, thereby eliminating the need to use different materials or complex pre- or postprocessing of the samples. We also demonstrate that this method improves the transition of 25–50 nm VO<sub>2</sub> thin films on silicon substrates. Our study reveals a simple approach for direct growth of ultrathin VO<sub>2</sub> films exhibiting a significant MIT, which is commonly accepted unattainable over substrates of technological importance, such as sapphire and silicon.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 15\",\"pages\":\"22992–23002 22992–23002\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c02682\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c02682","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钒(VO2)薄膜中的金属-绝缘体转变(MIT)受晶粒大小、厚度和界面特性的影响很大。通常情况下,在使用蓝宝石和硅等功能基底时,二氧化钒的最小厚度约为 50 纳米,才能表现出明显的金属-绝缘转换。有几项研究表明,20 纳米以下的薄膜可以在整个 MIT 内实现高达 2-3 个十年的电阻变化,但需要对样品进行复杂的预处理或后处理。我们的研究表明,沉积前的基底条件控制有助于直接生长 15 纳米的 VO2 超薄薄膜,其在整个 MIT 上的电阻变化介于 3 到 4 个十年之间。我们的研究结果表明,薄膜与基底之间的界面在决定初始生长层和结构演变方面至关重要。通过适当的基底表面处理,无论基底的晶体学取向如何,都能增强所需的 VO2 MIT。此外,我们还提出了一种新方法,通过加入预先沉积的 1.5 纳米氧化钒缓冲层,在超薄 VO2 薄膜的 MIT 上获得较大的电阻变化,从而无需使用不同的材料或对样品进行复杂的预处理或后处理。我们还证明,这种方法改善了硅基底上 25-50 nm VO2 薄膜的过渡。我们的研究揭示了一种直接生长超薄 VO2 薄膜的简单方法,这种方法能在蓝宝石和硅等具有重要技术意义的基底上实现通常认为无法实现的显著 MIT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrathin VO2 Films on Functional Substrates

Ultrathin VO2 Films on Functional Substrates

The metal–insulator transition (MIT) in vanadium dioxide (VO2) thin films is strongly affected by grain size, thickness, and interfacial properties. Typically, a minimum thickness around 50 nm is required for VO2 to exhibit a significant MIT when functional substrates like sapphire and silicon are used. Several works have shown that thin films below 20 nm, with up to 2–3 decades of change in the resistance across the MIT, can be achieved but require complex pre- or postprocessing of the samples. We show that predeposition substrate condition control facilitates the direct growth of VO2 ultrathin 15 nm films, exhibiting a resistance change between 3 and 4 decades across the MIT. Our findings indicate that the interface between the film and the substrate is crucial in determining the initial growth layers and the structural evolution. With appropriate substrate surface treatment, the desired VO2 MIT can be enhanced regardless of the substrate crystallographic orientation. Moreover, we propose a novel approach to obtain large resistance changes across the MIT in ultrathin VO2 films by incorporating a predeposited 1.5 nm vanadium oxide buffer layer, thereby eliminating the need to use different materials or complex pre- or postprocessing of the samples. We also demonstrate that this method improves the transition of 25–50 nm VO2 thin films on silicon substrates. Our study reveals a simple approach for direct growth of ultrathin VO2 films exhibiting a significant MIT, which is commonly accepted unattainable over substrates of technological importance, such as sapphire and silicon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信