Zhiyuan Yin, Liya Bi, Yueqing Shi and Shaowei Li*,
{"title":"一种用于振动敏感应用的经济高效的氦气回收系统","authors":"Zhiyuan Yin, Liya Bi, Yueqing Shi and Shaowei Li*, ","doi":"10.1021/acsmeasuresciau.4c0009710.1021/acsmeasuresciau.4c00097","DOIUrl":null,"url":null,"abstract":"<p >We present the design of a helium liquefaction system tailored to efficiently recover helium vapor from either an individual or a small cluster of vibration-sensitive cryogenic instruments. This design prioritizes a compact footprint, mitigating potential contamination sources such as gas bags and oil-lubricated compressors while maximizing the recovery rate by capturing both the boil-offs during normal operation and the refilling process of the bath cryostat. We demonstrated its performance by applying it to a commercial low-temperature scanning probe microscope. It features a >94% recovery rate and induces negligible vibrational noise to the microscope. Due to its adaptability, affordability, compact size, and suitability for homemade setups, we foresee that our design can be utilized across a wide range of experimental measurements where liquid helium is used as the cryogen.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"226–233 226–233"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00097","citationCount":"0","resultStr":"{\"title\":\"An Economical and Efficient Helium Recovery System for Vibration-Sensitive Applications\",\"authors\":\"Zhiyuan Yin, Liya Bi, Yueqing Shi and Shaowei Li*, \",\"doi\":\"10.1021/acsmeasuresciau.4c0009710.1021/acsmeasuresciau.4c00097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present the design of a helium liquefaction system tailored to efficiently recover helium vapor from either an individual or a small cluster of vibration-sensitive cryogenic instruments. This design prioritizes a compact footprint, mitigating potential contamination sources such as gas bags and oil-lubricated compressors while maximizing the recovery rate by capturing both the boil-offs during normal operation and the refilling process of the bath cryostat. We demonstrated its performance by applying it to a commercial low-temperature scanning probe microscope. It features a >94% recovery rate and induces negligible vibrational noise to the microscope. Due to its adaptability, affordability, compact size, and suitability for homemade setups, we foresee that our design can be utilized across a wide range of experimental measurements where liquid helium is used as the cryogen.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"5 2\",\"pages\":\"226–233 226–233\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00097\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An Economical and Efficient Helium Recovery System for Vibration-Sensitive Applications
We present the design of a helium liquefaction system tailored to efficiently recover helium vapor from either an individual or a small cluster of vibration-sensitive cryogenic instruments. This design prioritizes a compact footprint, mitigating potential contamination sources such as gas bags and oil-lubricated compressors while maximizing the recovery rate by capturing both the boil-offs during normal operation and the refilling process of the bath cryostat. We demonstrated its performance by applying it to a commercial low-temperature scanning probe microscope. It features a >94% recovery rate and induces negligible vibrational noise to the microscope. Due to its adaptability, affordability, compact size, and suitability for homemade setups, we foresee that our design can be utilized across a wide range of experimental measurements where liquid helium is used as the cryogen.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.