Xiaofei Li, Yubao Liu, Qining Yang, Weijian Zhang, Haoliang Wang, Weituo Zhang, Zhuang Li, Mingliang Ji, Yumeng You and Jun Lu*,
{"title":"可注射压电水凝胶通过重塑电生理微环境和M2巨噬细胞极化促进肌腱骨愈合","authors":"Xiaofei Li, Yubao Liu, Qining Yang, Weijian Zhang, Haoliang Wang, Weituo Zhang, Zhuang Li, Mingliang Ji, Yumeng You and Jun Lu*, ","doi":"10.1021/acsami.4c2101110.1021/acsami.4c21011","DOIUrl":null,"url":null,"abstract":"<p >Rotator cuff tear (RCT) is a common musculoskeletal disease that poses challenges for functional regeneration of the tendon–bone interface (TBI). The transition of TBI between soft and hard tissues determines its structural and physiological environment complexity. Here, we present an injectable biopiezoelectric material PVA/CNF/BTO@PDA (Piezoelectric) hydrogel based on three-dimensional (3D) printing inspired by the “muscle–electrical coupling”. This Piezoelectric hydrogel indicated desirable piezoelectric and mechanical properties, excellent biodegradability, and biosafety. In vitro, electrical stimulation from Piezoelectric hydrogel by the Flexcell Tissue Train system promoted the polarization of macrophages to the M2 phenotype, directing the targeted aggregation and zonal-specific differentiation of bone mesenchymal stem cells (BMSCs) for TBI formation. Also, optimal piezoelectric stimulation of the Piezoelectric hydrogel could alleviate inflammatory factor expression and regulate the osteotendinogenic differentiation of BMSCs under an H<sub>2</sub>O<sub>2</sub>/IL-1β inflammation environment. Furthermore, in vivo application of injectable Piezoelectric hydrogel demonstrates its regenerative potential, indicating that physiological repair with Piezoelectric hydrogel significantly accelerates and promotes TBI healing in a chronic RCT model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration and enhance the treatment outcomes for RCT.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 15","pages":"22210–22231 22210–22231"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c21011","citationCount":"0","resultStr":"{\"title\":\"Injectable Piezoelectric Hydrogel Promotes Tendon–Bone Healing via Reshaping the Electrophysiological Microenvironment and M2 Macrophage Polarization\",\"authors\":\"Xiaofei Li, Yubao Liu, Qining Yang, Weijian Zhang, Haoliang Wang, Weituo Zhang, Zhuang Li, Mingliang Ji, Yumeng You and Jun Lu*, \",\"doi\":\"10.1021/acsami.4c2101110.1021/acsami.4c21011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rotator cuff tear (RCT) is a common musculoskeletal disease that poses challenges for functional regeneration of the tendon–bone interface (TBI). The transition of TBI between soft and hard tissues determines its structural and physiological environment complexity. Here, we present an injectable biopiezoelectric material PVA/CNF/BTO@PDA (Piezoelectric) hydrogel based on three-dimensional (3D) printing inspired by the “muscle–electrical coupling”. This Piezoelectric hydrogel indicated desirable piezoelectric and mechanical properties, excellent biodegradability, and biosafety. In vitro, electrical stimulation from Piezoelectric hydrogel by the Flexcell Tissue Train system promoted the polarization of macrophages to the M2 phenotype, directing the targeted aggregation and zonal-specific differentiation of bone mesenchymal stem cells (BMSCs) for TBI formation. Also, optimal piezoelectric stimulation of the Piezoelectric hydrogel could alleviate inflammatory factor expression and regulate the osteotendinogenic differentiation of BMSCs under an H<sub>2</sub>O<sub>2</sub>/IL-1β inflammation environment. Furthermore, in vivo application of injectable Piezoelectric hydrogel demonstrates its regenerative potential, indicating that physiological repair with Piezoelectric hydrogel significantly accelerates and promotes TBI healing in a chronic RCT model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration and enhance the treatment outcomes for RCT.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 15\",\"pages\":\"22210–22231 22210–22231\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c21011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c21011\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c21011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Injectable Piezoelectric Hydrogel Promotes Tendon–Bone Healing via Reshaping the Electrophysiological Microenvironment and M2 Macrophage Polarization
Rotator cuff tear (RCT) is a common musculoskeletal disease that poses challenges for functional regeneration of the tendon–bone interface (TBI). The transition of TBI between soft and hard tissues determines its structural and physiological environment complexity. Here, we present an injectable biopiezoelectric material PVA/CNF/BTO@PDA (Piezoelectric) hydrogel based on three-dimensional (3D) printing inspired by the “muscle–electrical coupling”. This Piezoelectric hydrogel indicated desirable piezoelectric and mechanical properties, excellent biodegradability, and biosafety. In vitro, electrical stimulation from Piezoelectric hydrogel by the Flexcell Tissue Train system promoted the polarization of macrophages to the M2 phenotype, directing the targeted aggregation and zonal-specific differentiation of bone mesenchymal stem cells (BMSCs) for TBI formation. Also, optimal piezoelectric stimulation of the Piezoelectric hydrogel could alleviate inflammatory factor expression and regulate the osteotendinogenic differentiation of BMSCs under an H2O2/IL-1β inflammation environment. Furthermore, in vivo application of injectable Piezoelectric hydrogel demonstrates its regenerative potential, indicating that physiological repair with Piezoelectric hydrogel significantly accelerates and promotes TBI healing in a chronic RCT model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration and enhance the treatment outcomes for RCT.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.