Nobuto Funakoshi*, Masanori Wakizaka, Qingyun Wan, Yongbing Shen, Haitao Zhang, Hiroshi Ito, Hiroaki Iguchi, Ryuta Ishikawa, Yoji Horii, Brian K. Breedlove, Shinya Takaishi and Masahiro Yamashita*,
{"title":"导电有机π给体体系Ln(III)单分子磁体的独特磁弛豫行为","authors":"Nobuto Funakoshi*, Masanori Wakizaka, Qingyun Wan, Yongbing Shen, Haitao Zhang, Hiroshi Ito, Hiroaki Iguchi, Ryuta Ishikawa, Yoji Horii, Brian K. Breedlove, Shinya Takaishi and Masahiro Yamashita*, ","doi":"10.1021/acs.cgd.5c0012010.1021/acs.cgd.5c00120","DOIUrl":null,"url":null,"abstract":"<p >It is expected that single-molecule magnets (SMMs) containing Lanthanoids play an important role in high-density magnetic devices. In this work, we synthesized new conductive Ln(III) SMMs, (TMTSF)<sub>4</sub>[Ln(NCS)<sub>6</sub>](CH<sub>3</sub>CN)<sub>2</sub>(CH<sub>2</sub>Cl<sub>2</sub>)<sub>0.5</sub> (H<sub>2</sub>O)<sub>0.5</sub> (TMTSF = (tetramethyltetraselenafulvalene), Ln(III) = Dy <b>(1)</b> and Tb <b>(2)</b>), which have organic TMTSF π donors as the conducting part. The crystal structure has high symmetry, and lanthanoid complexes form a lattice-like structure with the TMTSF donor. [Ln(NCS)<sub>6</sub>]<sup>3–</sup> forms a distorted octahedron due to S···Se contact with the TMTSF. The compound undergoes fast magnetic relaxation in the low-temperature region, and its relaxation time τ is almost independent of the temperature. The change in rate is nearly linear. The compounds show semiconductive behavior and a weak magnetoresistance effect at ambient and high pressure at the low temperatures.</p><p >It is expected that Single-Molecule-Magnets (SMMs) containing Lanthanoids play an important role in high-density magnetic devices. In this work, we synthesized new conductive Ln(III) SMMs, (TMTSF)<sub>4</sub>[Ln(NCS)<sub>6</sub>](CH<sub>3</sub>CN)<sub>2</sub>(CH<sub>2</sub>Cl<sub>2</sub>)<sub>0.5</sub> (H<sub>2</sub>O)<sub>0.5</sub> (TMTSF = (tetramethyltetraselenafulvalene), Ln(III) = Dy <b>(1)</b> and Tb <b>(2)</b>), which have organic TMTSF π donors as the conducting part. The crystal structure has high symmetry, and lanthanoid complexes form a lattice-like structure with the TMTSF donor. [Ln(NCS)<sub>6</sub>]<sup>3−</sup> forms a distorted octahedron due to S···Se contact with the TMTSF. The compound undergoes fast magnetic relaxation in the low-temperature region, and its relaxation time τ is almost independent of the temperature. The change in rate is nearly linear. The compounds show semiconductive behavior and a weak magnetoresistance effect at ambient and high pressure at the low temperatures.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 8","pages":"2650–2656 2650–2656"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.5c00120","citationCount":"0","resultStr":"{\"title\":\"Distinctive Magnetic Relaxation Behavior of Ln(III) Single-Molecule Magnets with a Conducting Organic π Donor System\",\"authors\":\"Nobuto Funakoshi*, Masanori Wakizaka, Qingyun Wan, Yongbing Shen, Haitao Zhang, Hiroshi Ito, Hiroaki Iguchi, Ryuta Ishikawa, Yoji Horii, Brian K. Breedlove, Shinya Takaishi and Masahiro Yamashita*, \",\"doi\":\"10.1021/acs.cgd.5c0012010.1021/acs.cgd.5c00120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >It is expected that single-molecule magnets (SMMs) containing Lanthanoids play an important role in high-density magnetic devices. In this work, we synthesized new conductive Ln(III) SMMs, (TMTSF)<sub>4</sub>[Ln(NCS)<sub>6</sub>](CH<sub>3</sub>CN)<sub>2</sub>(CH<sub>2</sub>Cl<sub>2</sub>)<sub>0.5</sub> (H<sub>2</sub>O)<sub>0.5</sub> (TMTSF = (tetramethyltetraselenafulvalene), Ln(III) = Dy <b>(1)</b> and Tb <b>(2)</b>), which have organic TMTSF π donors as the conducting part. The crystal structure has high symmetry, and lanthanoid complexes form a lattice-like structure with the TMTSF donor. [Ln(NCS)<sub>6</sub>]<sup>3–</sup> forms a distorted octahedron due to S···Se contact with the TMTSF. The compound undergoes fast magnetic relaxation in the low-temperature region, and its relaxation time τ is almost independent of the temperature. The change in rate is nearly linear. The compounds show semiconductive behavior and a weak magnetoresistance effect at ambient and high pressure at the low temperatures.</p><p >It is expected that Single-Molecule-Magnets (SMMs) containing Lanthanoids play an important role in high-density magnetic devices. In this work, we synthesized new conductive Ln(III) SMMs, (TMTSF)<sub>4</sub>[Ln(NCS)<sub>6</sub>](CH<sub>3</sub>CN)<sub>2</sub>(CH<sub>2</sub>Cl<sub>2</sub>)<sub>0.5</sub> (H<sub>2</sub>O)<sub>0.5</sub> (TMTSF = (tetramethyltetraselenafulvalene), Ln(III) = Dy <b>(1)</b> and Tb <b>(2)</b>), which have organic TMTSF π donors as the conducting part. The crystal structure has high symmetry, and lanthanoid complexes form a lattice-like structure with the TMTSF donor. [Ln(NCS)<sub>6</sub>]<sup>3−</sup> forms a distorted octahedron due to S···Se contact with the TMTSF. The compound undergoes fast magnetic relaxation in the low-temperature region, and its relaxation time τ is almost independent of the temperature. The change in rate is nearly linear. The compounds show semiconductive behavior and a weak magnetoresistance effect at ambient and high pressure at the low temperatures.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 8\",\"pages\":\"2650–2656 2650–2656\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.5c00120\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00120\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00120","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Distinctive Magnetic Relaxation Behavior of Ln(III) Single-Molecule Magnets with a Conducting Organic π Donor System
It is expected that single-molecule magnets (SMMs) containing Lanthanoids play an important role in high-density magnetic devices. In this work, we synthesized new conductive Ln(III) SMMs, (TMTSF)4[Ln(NCS)6](CH3CN)2(CH2Cl2)0.5 (H2O)0.5 (TMTSF = (tetramethyltetraselenafulvalene), Ln(III) = Dy (1) and Tb (2)), which have organic TMTSF π donors as the conducting part. The crystal structure has high symmetry, and lanthanoid complexes form a lattice-like structure with the TMTSF donor. [Ln(NCS)6]3– forms a distorted octahedron due to S···Se contact with the TMTSF. The compound undergoes fast magnetic relaxation in the low-temperature region, and its relaxation time τ is almost independent of the temperature. The change in rate is nearly linear. The compounds show semiconductive behavior and a weak magnetoresistance effect at ambient and high pressure at the low temperatures.
It is expected that Single-Molecule-Magnets (SMMs) containing Lanthanoids play an important role in high-density magnetic devices. In this work, we synthesized new conductive Ln(III) SMMs, (TMTSF)4[Ln(NCS)6](CH3CN)2(CH2Cl2)0.5 (H2O)0.5 (TMTSF = (tetramethyltetraselenafulvalene), Ln(III) = Dy (1) and Tb (2)), which have organic TMTSF π donors as the conducting part. The crystal structure has high symmetry, and lanthanoid complexes form a lattice-like structure with the TMTSF donor. [Ln(NCS)6]3− forms a distorted octahedron due to S···Se contact with the TMTSF. The compound undergoes fast magnetic relaxation in the low-temperature region, and its relaxation time τ is almost independent of the temperature. The change in rate is nearly linear. The compounds show semiconductive behavior and a weak magnetoresistance effect at ambient and high pressure at the low temperatures.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.