形态可调二元过渡金属氧化物Heterostructure@Carbon锂离子电池复合材料

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jaeseong Kim, Sangyeop Kim, Chanyoung Lee, Seyoung Koo, Youngbok Lee, Hee Soo Kim*, Hak-Sung Jung* and Won Cheol Yoo*, 
{"title":"形态可调二元过渡金属氧化物Heterostructure@Carbon锂离子电池复合材料","authors":"Jaeseong Kim,&nbsp;Sangyeop Kim,&nbsp;Chanyoung Lee,&nbsp;Seyoung Koo,&nbsp;Youngbok Lee,&nbsp;Hee Soo Kim*,&nbsp;Hak-Sung Jung* and Won Cheol Yoo*,&nbsp;","doi":"10.1021/acsami.5c0179410.1021/acsami.5c01794","DOIUrl":null,"url":null,"abstract":"<p >Heterostructures of binary and unary transition metal oxides (B and UTMOs) have demonstrated excellent electrochemical performance in lithium-ion batteries (LIBs) due to synergistic effects; however, there remains a lack of research combining multiple strategies for synergy enhancement. Herein, we present the development of crystallinity-controlled heterostructures based on nickel and cobalt oxides (NiCo<sub>2</sub>O<sub>4</sub>/NiO and NiO/Co<sub>3</sub>O<sub>4</sub>) with different morphologies (urchin- and flower-like structures, e.g., U-NiCo<sub>2</sub>O<sub>4</sub>/NiO and F-NiCo<sub>2</sub>O<sub>4</sub>/NiO) to investigate the influence of heterostructure combinations and morphologies on electrochemical performance in LIBs. The morphologies of the heterostructures were controlled by adjusting the fluoride concentration during the synthesis of the nickel–cobalt (Ni–Co) precursor, while heterostructure combinations were regulated by heat treatment under specific conditions. When used as anodes for LIBs, electrochemical analyses revealed that the carbon-coated urchin-like U-NiCo<sub>2</sub>O<sub>4</sub>/NiO (U-NiCo<sub>2</sub>O<sub>4</sub>/NiO@C) sample provided more efficient charge transfer and a shorter Li-ion transport pathway compared to its counterpart (F-NiCo<sub>2</sub>O<sub>4</sub>/NiO@C) due to its high surface area and distinctive morphological features. In addition, U-NiCo<sub>2</sub>O<sub>4</sub>/NiO@C exhibited superior electrochemical performance as an anode in LIBs than U-NiO/Co<sub>3</sub>O<sub>4</sub>@C, indicating that the advantageous effects of BTMO over UTMO can effectively enhance LIB performance. This facile synthesis approach provides a foundation for morphology-controlled heterostructures in the development of high-performance anode materials for LIB applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 15","pages":"22792–22802 22792–22802"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphology-Tunable Binary Transition Metal Oxide Heterostructure@Carbon Composites for Lithium-Ion Batteries\",\"authors\":\"Jaeseong Kim,&nbsp;Sangyeop Kim,&nbsp;Chanyoung Lee,&nbsp;Seyoung Koo,&nbsp;Youngbok Lee,&nbsp;Hee Soo Kim*,&nbsp;Hak-Sung Jung* and Won Cheol Yoo*,&nbsp;\",\"doi\":\"10.1021/acsami.5c0179410.1021/acsami.5c01794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Heterostructures of binary and unary transition metal oxides (B and UTMOs) have demonstrated excellent electrochemical performance in lithium-ion batteries (LIBs) due to synergistic effects; however, there remains a lack of research combining multiple strategies for synergy enhancement. Herein, we present the development of crystallinity-controlled heterostructures based on nickel and cobalt oxides (NiCo<sub>2</sub>O<sub>4</sub>/NiO and NiO/Co<sub>3</sub>O<sub>4</sub>) with different morphologies (urchin- and flower-like structures, e.g., U-NiCo<sub>2</sub>O<sub>4</sub>/NiO and F-NiCo<sub>2</sub>O<sub>4</sub>/NiO) to investigate the influence of heterostructure combinations and morphologies on electrochemical performance in LIBs. The morphologies of the heterostructures were controlled by adjusting the fluoride concentration during the synthesis of the nickel–cobalt (Ni–Co) precursor, while heterostructure combinations were regulated by heat treatment under specific conditions. When used as anodes for LIBs, electrochemical analyses revealed that the carbon-coated urchin-like U-NiCo<sub>2</sub>O<sub>4</sub>/NiO (U-NiCo<sub>2</sub>O<sub>4</sub>/NiO@C) sample provided more efficient charge transfer and a shorter Li-ion transport pathway compared to its counterpart (F-NiCo<sub>2</sub>O<sub>4</sub>/NiO@C) due to its high surface area and distinctive morphological features. In addition, U-NiCo<sub>2</sub>O<sub>4</sub>/NiO@C exhibited superior electrochemical performance as an anode in LIBs than U-NiO/Co<sub>3</sub>O<sub>4</sub>@C, indicating that the advantageous effects of BTMO over UTMO can effectively enhance LIB performance. This facile synthesis approach provides a foundation for morphology-controlled heterostructures in the development of high-performance anode materials for LIB applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 15\",\"pages\":\"22792–22802 22792–22802\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01794\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01794","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于协同效应,二元和一元过渡金属氧化物(B 和 UTMOs)的异质结构在锂离子电池(LIBs)中表现出了优异的电化学性能;然而,目前仍然缺乏结合多种策略来增强协同效应的研究。在此,我们以镍和钴氧化物(NiCo2O4/NiO 和 NiO/Co3O4)为基础,开发了具有不同形态(海胆状和花朵状结构,如 U-NiCo2O4/NiO 和 F-NiCo2O4/NiO)的结晶度可控异质结构,以研究异质结构组合和形态对锂离子电池电化学性能的影响。在镍钴(Ni-Co)前驱体的合成过程中,通过调整氟化物浓度来控制异质结构的形态,而在特定条件下通过热处理来调节异质结构的组合。在用作 LIB 的阳极时,电化学分析表明,碳包覆的海胆状 U-NiCo2O4/NiO (U-NiCo2O4/NiO@C)样品由于具有高比表面积和独特的形态特征,与其对应样品(F-NiCo2O4/NiO@C)相比,能提供更高效的电荷转移和更短的锂离子传输路径。此外,与 U-NiO/Co3O4@C 相比,U-NiCo2O4/NiO@C 作为 LIB 的阳极表现出更优越的电化学性能,这表明 BTMO 相对于 UTMO 的优势作用可有效提高 LIB 的性能。这种简便的合成方法为开发用于 LIB 应用的高性能负极材料的形态控制异质结构奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morphology-Tunable Binary Transition Metal Oxide Heterostructure@Carbon Composites for Lithium-Ion Batteries

Morphology-Tunable Binary Transition Metal Oxide Heterostructure@Carbon Composites for Lithium-Ion Batteries

Heterostructures of binary and unary transition metal oxides (B and UTMOs) have demonstrated excellent electrochemical performance in lithium-ion batteries (LIBs) due to synergistic effects; however, there remains a lack of research combining multiple strategies for synergy enhancement. Herein, we present the development of crystallinity-controlled heterostructures based on nickel and cobalt oxides (NiCo2O4/NiO and NiO/Co3O4) with different morphologies (urchin- and flower-like structures, e.g., U-NiCo2O4/NiO and F-NiCo2O4/NiO) to investigate the influence of heterostructure combinations and morphologies on electrochemical performance in LIBs. The morphologies of the heterostructures were controlled by adjusting the fluoride concentration during the synthesis of the nickel–cobalt (Ni–Co) precursor, while heterostructure combinations were regulated by heat treatment under specific conditions. When used as anodes for LIBs, electrochemical analyses revealed that the carbon-coated urchin-like U-NiCo2O4/NiO (U-NiCo2O4/NiO@C) sample provided more efficient charge transfer and a shorter Li-ion transport pathway compared to its counterpart (F-NiCo2O4/NiO@C) due to its high surface area and distinctive morphological features. In addition, U-NiCo2O4/NiO@C exhibited superior electrochemical performance as an anode in LIBs than U-NiO/Co3O4@C, indicating that the advantageous effects of BTMO over UTMO can effectively enhance LIB performance. This facile synthesis approach provides a foundation for morphology-controlled heterostructures in the development of high-performance anode materials for LIB applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信