催化剂-电解质界面上单原子催化剂的动态结构演化:来自电化学耦合场的见解

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaotao Zhang, Jiao Chen, Hongyan Wang, Yongliang Tang, Yuan Ping Feng, Yuanzheng Chen* and Zhongfang Chen*, 
{"title":"催化剂-电解质界面上单原子催化剂的动态结构演化:来自电化学耦合场的见解","authors":"Xiaotao Zhang,&nbsp;Jiao Chen,&nbsp;Hongyan Wang,&nbsp;Yongliang Tang,&nbsp;Yuan Ping Feng,&nbsp;Yuanzheng Chen* and Zhongfang Chen*,&nbsp;","doi":"10.1021/acs.nanolett.5c0124510.1021/acs.nanolett.5c01245","DOIUrl":null,"url":null,"abstract":"<p >Dynamic catalytic structures at the catalyst–electrolyte interface pose significant challenges in accurately identifying active sites and establishing precise structure–activity relationships essential for catalyst design and performance optimization. Herein, we unveil the dynamic structural evolution of Cu–N–C single-atom catalysts (SACs) under electrochemical conditions, elucidating the critical role of the electrochemical coupled field. Using hybrid-solvation constant potential simulations, we identify that the unique <i>d</i><sub><i>x</i>2–<i>y</i>2</sub> orbital occupancy at the Fermi level, stemming from copper’s <i>d</i><sup>9</sup> electronic configuration, renders Cu–N bonds highly sensitive to external voltage. Proton transfer (PT) triggers electronic reordering that converts discrete energy levels into continuous states near the Fermi level, enhancing charge accumulation in the Cu–N antibonding state. Consequently, the Cu–N bonds are weakened, ultimately leading to copper atom leaching. Our work provides a fundamental understanding of SACs’ dynamics under realistic electrochemical environments, offering new insights for the rational design of robust electrocatalysts.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 15","pages":"6332–6339 6332–6339"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Structural Evolution of Single-Atom Catalysts at the Catalyst–Electrolyte Interface: Insights from Electrochemical Coupled Field\",\"authors\":\"Xiaotao Zhang,&nbsp;Jiao Chen,&nbsp;Hongyan Wang,&nbsp;Yongliang Tang,&nbsp;Yuan Ping Feng,&nbsp;Yuanzheng Chen* and Zhongfang Chen*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0124510.1021/acs.nanolett.5c01245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dynamic catalytic structures at the catalyst–electrolyte interface pose significant challenges in accurately identifying active sites and establishing precise structure–activity relationships essential for catalyst design and performance optimization. Herein, we unveil the dynamic structural evolution of Cu–N–C single-atom catalysts (SACs) under electrochemical conditions, elucidating the critical role of the electrochemical coupled field. Using hybrid-solvation constant potential simulations, we identify that the unique <i>d</i><sub><i>x</i>2–<i>y</i>2</sub> orbital occupancy at the Fermi level, stemming from copper’s <i>d</i><sup>9</sup> electronic configuration, renders Cu–N bonds highly sensitive to external voltage. Proton transfer (PT) triggers electronic reordering that converts discrete energy levels into continuous states near the Fermi level, enhancing charge accumulation in the Cu–N antibonding state. Consequently, the Cu–N bonds are weakened, ultimately leading to copper atom leaching. Our work provides a fundamental understanding of SACs’ dynamics under realistic electrochemical environments, offering new insights for the rational design of robust electrocatalysts.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 15\",\"pages\":\"6332–6339 6332–6339\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01245\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01245","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

催化剂-电解质界面上的动态催化结构在准确识别活性位点和建立精确的结构-活性关系方面提出了重大挑战,这对催化剂设计和性能优化至关重要。本文揭示了Cu-N-C单原子催化剂(SACs)在电化学条件下的动态结构演变,阐明了电化学耦合场的关键作用。通过混合溶剂化恒电位模拟,我们发现,由于铜的d9电子构型,在费米能级上独特的dx2-y2轨道占用率使得Cu-N键对外部电压高度敏感。质子转移(PT)触发电子重排序,将离散能级转换为接近费米能级的连续态,增强Cu-N反键态中的电荷积累。因此,Cu-N键被削弱,最终导致铜原子浸出。我们的工作提供了对实际电化学环境下sac动力学的基本理解,为合理设计稳健的电催化剂提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Structural Evolution of Single-Atom Catalysts at the Catalyst–Electrolyte Interface: Insights from Electrochemical Coupled Field

Dynamic Structural Evolution of Single-Atom Catalysts at the Catalyst–Electrolyte Interface: Insights from Electrochemical Coupled Field

Dynamic catalytic structures at the catalyst–electrolyte interface pose significant challenges in accurately identifying active sites and establishing precise structure–activity relationships essential for catalyst design and performance optimization. Herein, we unveil the dynamic structural evolution of Cu–N–C single-atom catalysts (SACs) under electrochemical conditions, elucidating the critical role of the electrochemical coupled field. Using hybrid-solvation constant potential simulations, we identify that the unique dx2–y2 orbital occupancy at the Fermi level, stemming from copper’s d9 electronic configuration, renders Cu–N bonds highly sensitive to external voltage. Proton transfer (PT) triggers electronic reordering that converts discrete energy levels into continuous states near the Fermi level, enhancing charge accumulation in the Cu–N antibonding state. Consequently, the Cu–N bonds are weakened, ultimately leading to copper atom leaching. Our work provides a fundamental understanding of SACs’ dynamics under realistic electrochemical environments, offering new insights for the rational design of robust electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信