在非均匀网格上采用完全离散的 L2-version 紧凑差分法求解四阶次扩散方程的长时间 H1 准则稳定性和次优收敛性

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Huifa Jiang , Emran Tohidi
{"title":"在非均匀网格上采用完全离散的 L2-version 紧凑差分法求解四阶次扩散方程的长时间 H1 准则稳定性和次优收敛性","authors":"Huifa Jiang ,&nbsp;Emran Tohidi","doi":"10.1016/j.amc.2025.129465","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a designed <em>L</em>2 compact approach for the fourth-order subdiffusion models on general nonuniform meshes. Initially, we establish long-time <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-stability and estimation of the error for the <em>L</em>2 compact approach under general nonuniform meshes, imposing only mild conditions on the time step ratio <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. This is achieved by leveraging the positive semidefiniteness of an essential bilinear form linked to the operator of <em>L</em>2 fractional derivative discussed by Quan and Wu (2023) <span><span>[26]</span></span>. Subsequently, we proceed to discretize the spatial differentiation using the compact difference approach, resulting in a fully discrete scheme that achieves the convergence of fourth-order for the space variable. Additionally, we demonstrate that the rate of convergence in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is the half of <span><math><mo>(</mo><mn>5</mn><mo>−</mo><mi>α</mi><mo>)</mo></math></span> for the improved graded mesh grids. Lastly, we conduct some numerical experiments to validate the robustness and competitiveness of our suggested approach.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"501 ","pages":"Article 129465"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long time H1-norm stability and suboptimal convergence of a fully discrete L2-version compact difference method on nonuniform mesh grids to solve fourth-order subdiffusion equations\",\"authors\":\"Huifa Jiang ,&nbsp;Emran Tohidi\",\"doi\":\"10.1016/j.amc.2025.129465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a designed <em>L</em>2 compact approach for the fourth-order subdiffusion models on general nonuniform meshes. Initially, we establish long-time <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-stability and estimation of the error for the <em>L</em>2 compact approach under general nonuniform meshes, imposing only mild conditions on the time step ratio <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. This is achieved by leveraging the positive semidefiniteness of an essential bilinear form linked to the operator of <em>L</em>2 fractional derivative discussed by Quan and Wu (2023) <span><span>[26]</span></span>. Subsequently, we proceed to discretize the spatial differentiation using the compact difference approach, resulting in a fully discrete scheme that achieves the convergence of fourth-order for the space variable. Additionally, we demonstrate that the rate of convergence in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is the half of <span><math><mo>(</mo><mn>5</mn><mo>−</mo><mi>α</mi><mo>)</mo></math></span> for the improved graded mesh grids. Lastly, we conduct some numerical experiments to validate the robustness and competitiveness of our suggested approach.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"501 \",\"pages\":\"Article 129465\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001924\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001924","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对一般非均匀网格上的四阶次扩散模型,提出了一种设计的L2紧化方法。首先,我们建立了L2紧化方法在一般非均匀网格下的长时间h1稳定性和误差估计,只对时间步长比ρk施加轻微的条件。这是通过利用Quan和Wu(2023)[26]讨论的与L2分数阶导数算子相关的基本双线性形式的正半恒性来实现的。随后,我们利用紧差分方法对空间微分进行离散化,得到了空间变量四阶收敛的完全离散格式。此外,我们还证明了改进的梯度网格在h1范数上的收敛速度是(5−α)的一半。最后,我们进行了一些数值实验来验证我们提出的方法的鲁棒性和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long time H1-norm stability and suboptimal convergence of a fully discrete L2-version compact difference method on nonuniform mesh grids to solve fourth-order subdiffusion equations
This study introduces a designed L2 compact approach for the fourth-order subdiffusion models on general nonuniform meshes. Initially, we establish long-time H1-stability and estimation of the error for the L2 compact approach under general nonuniform meshes, imposing only mild conditions on the time step ratio ρk. This is achieved by leveraging the positive semidefiniteness of an essential bilinear form linked to the operator of L2 fractional derivative discussed by Quan and Wu (2023) [26]. Subsequently, we proceed to discretize the spatial differentiation using the compact difference approach, resulting in a fully discrete scheme that achieves the convergence of fourth-order for the space variable. Additionally, we demonstrate that the rate of convergence in the H1-norm is the half of (5α) for the improved graded mesh grids. Lastly, we conduct some numerical experiments to validate the robustness and competitiveness of our suggested approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信