静电自组装聚合物薄膜赋予锌阳极界面结构和化学性质以增强稳定性

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xingwang Zhao , Xiaochen Liu , Bo Shang , Mingzhou Yang , Yi Xie , Lingjie Li , Nianbing Li , Jinglei Lei
{"title":"静电自组装聚合物薄膜赋予锌阳极界面结构和化学性质以增强稳定性","authors":"Xingwang Zhao ,&nbsp;Xiaochen Liu ,&nbsp;Bo Shang ,&nbsp;Mingzhou Yang ,&nbsp;Yi Xie ,&nbsp;Lingjie Li ,&nbsp;Nianbing Li ,&nbsp;Jinglei Lei","doi":"10.1016/j.ensm.2025.104260","DOIUrl":null,"url":null,"abstract":"<div><div>The instability of Zn anode caused by interfacial issues arising from parasitic reactions and dendrite growth remains a bottleneck for developing rechargeable aqueous zinc metal battery (RAZMB). Herein, an electrostatic self-assembled DS polymer film using poly(diallyldimethylammonium) (PDD<sup>+</sup>) and poly(sodium 4-styrenesulfonate) (PSS<sup>−</sup>) as units is designed to stabilize Zn anode by modulating the interfacial structure and chemistry. PDD<sup>+</sup> polycations chemically bond directly to Zn anode and then electrostatically interact with PSS<sup>−</sup> polyanions rich in sulfonate groups. The DS polymer film not only blocks direct contact between Zn and H<sub>2</sub>O but also flattens the anode surface potential, which effectively inhibits parasitic reactions and improves the diffusion behavior and deposition kinetics of Zn<sup>2+</sup> ions to achieve uniform Zn deposition. Moreover, the as-formed “externally elastic and internally rigid” interface endows DS-Zn anode with excellent cycling stability and reversibility. Consequently, the symmetric cell assembled with DS-Zn delivers an ultralong cycling stability of 3000 h. DS-Zn||Cu cell achieves a high CE of 99.7 % over 1600 cycles, outperforming most reported work. Meanwhile, the electrochemical performance of DS-Zn||VO<sub>2</sub> battery is markedly improved. The approach of designing and fabricating DS polymer film to modulate interfacial structure and chemistry for stabilizing Zn anode may boost the practical implementation of RAZMBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 ","pages":"Article 104260"},"PeriodicalIF":18.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrostatic self-assembled polymer film empowers the interfacial structure and chemistry of Zn anode for enhanced stability\",\"authors\":\"Xingwang Zhao ,&nbsp;Xiaochen Liu ,&nbsp;Bo Shang ,&nbsp;Mingzhou Yang ,&nbsp;Yi Xie ,&nbsp;Lingjie Li ,&nbsp;Nianbing Li ,&nbsp;Jinglei Lei\",\"doi\":\"10.1016/j.ensm.2025.104260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The instability of Zn anode caused by interfacial issues arising from parasitic reactions and dendrite growth remains a bottleneck for developing rechargeable aqueous zinc metal battery (RAZMB). Herein, an electrostatic self-assembled DS polymer film using poly(diallyldimethylammonium) (PDD<sup>+</sup>) and poly(sodium 4-styrenesulfonate) (PSS<sup>−</sup>) as units is designed to stabilize Zn anode by modulating the interfacial structure and chemistry. PDD<sup>+</sup> polycations chemically bond directly to Zn anode and then electrostatically interact with PSS<sup>−</sup> polyanions rich in sulfonate groups. The DS polymer film not only blocks direct contact between Zn and H<sub>2</sub>O but also flattens the anode surface potential, which effectively inhibits parasitic reactions and improves the diffusion behavior and deposition kinetics of Zn<sup>2+</sup> ions to achieve uniform Zn deposition. Moreover, the as-formed “externally elastic and internally rigid” interface endows DS-Zn anode with excellent cycling stability and reversibility. Consequently, the symmetric cell assembled with DS-Zn delivers an ultralong cycling stability of 3000 h. DS-Zn||Cu cell achieves a high CE of 99.7 % over 1600 cycles, outperforming most reported work. Meanwhile, the electrochemical performance of DS-Zn||VO<sub>2</sub> battery is markedly improved. The approach of designing and fabricating DS polymer film to modulate interfacial structure and chemistry for stabilizing Zn anode may boost the practical implementation of RAZMBs.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"78 \",\"pages\":\"Article 104260\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725002582\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002582","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

寄生反应和枝晶生长引起的界面问题所导致的锌阳极不稳定性仍然是开发可充电水性锌金属电池(RAZMB)的瓶颈。本文设计了一种以聚(二烯丙基二甲基铵)(PDD+)和聚(4-苯乙烯磺酸钠)(PSS-)为单元的静电自组装 DS 聚合物薄膜,通过调节界面结构和化学性质来稳定锌阳极。PDD+ 聚阳离子直接与锌阳极发生化学键合,然后与富含磺酸基团的 PSS- 聚阴离子发生静电作用。DS 聚合物膜不仅能阻断 Zn 与 H2O 的直接接触,还能使阳极表面电位变平,从而有效抑制寄生反应,改善 Zn2+ 离子的扩散行为和沉积动力学,实现均匀的 Zn 沉积。此外,所形成的 "外弹内刚 "界面赋予了 DS-Zn 阳极出色的循环稳定性和可逆性。因此,使用 DS-Zn 组装的对称电池具有 3000 小时的超长循环稳定性。DS-Zn||Cu 电池在 1600 次循环中实现了 99.7% 的高 CE 值,优于大多数已报道的研究成果。同时,DS-Zn||VO2 电池的电化学性能也得到了显著改善。通过设计和制造 DS 聚合物薄膜来调节界面结构和化学性质以稳定锌阳极的方法,可能会促进 RAZMB 的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrostatic self-assembled polymer film empowers the interfacial structure and chemistry of Zn anode for enhanced stability
The instability of Zn anode caused by interfacial issues arising from parasitic reactions and dendrite growth remains a bottleneck for developing rechargeable aqueous zinc metal battery (RAZMB). Herein, an electrostatic self-assembled DS polymer film using poly(diallyldimethylammonium) (PDD+) and poly(sodium 4-styrenesulfonate) (PSS) as units is designed to stabilize Zn anode by modulating the interfacial structure and chemistry. PDD+ polycations chemically bond directly to Zn anode and then electrostatically interact with PSS polyanions rich in sulfonate groups. The DS polymer film not only blocks direct contact between Zn and H2O but also flattens the anode surface potential, which effectively inhibits parasitic reactions and improves the diffusion behavior and deposition kinetics of Zn2+ ions to achieve uniform Zn deposition. Moreover, the as-formed “externally elastic and internally rigid” interface endows DS-Zn anode with excellent cycling stability and reversibility. Consequently, the symmetric cell assembled with DS-Zn delivers an ultralong cycling stability of 3000 h. DS-Zn||Cu cell achieves a high CE of 99.7 % over 1600 cycles, outperforming most reported work. Meanwhile, the electrochemical performance of DS-Zn||VO2 battery is markedly improved. The approach of designing and fabricating DS polymer film to modulate interfacial structure and chemistry for stabilizing Zn anode may boost the practical implementation of RAZMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信