可持续环境应用mxene基纳米复合光催化剂的工程空间尺寸和表面化学

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yan Zhang, Chuanhui Dong, Zi Ye, Hou Yang, Sheng Ye
{"title":"可持续环境应用mxene基纳米复合光催化剂的工程空间尺寸和表面化学","authors":"Yan Zhang, Chuanhui Dong, Zi Ye, Hou Yang, Sheng Ye","doi":"10.1039/d5cc00587f","DOIUrl":null,"url":null,"abstract":"It is very urgent to solve environmental pollution problem. MXene-based composite photocatalysts show great promise, which utilize solar energy for purification. MXenes have excellent electrical conductivity, a large surface area due to their 2D structure, and surface functional groups beneficial for photocatalysis. In this review, various synthesis methods have been developed to prepare MXenes with different properties for specific applications, such as hydrofluoric acid etching, substitutes etching and molten fluoride etching. The influence of different groups on the performance of MXene have been determined. In photocatalytic reactions, modification strategies including heterojunction construction, doping, precious metal deposition and single atom anchor have been explored to enhance the photocatalytic performance of MXene-based composites. It is found that MXenes can act as support that limits photocatalyst size, enhance reactant adsorption, and functions as cocatalyst loaded onto semiconductors to improve charge separation. Our perspectives on the key challenges and future directions of developing high-performance MXene-based composite photocatalysts for environmental application are elaborated.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"121 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering space dimensional and surface chemistry of MXene-based nanocomposite photocatalysts for sustainable environmental application\",\"authors\":\"Yan Zhang, Chuanhui Dong, Zi Ye, Hou Yang, Sheng Ye\",\"doi\":\"10.1039/d5cc00587f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is very urgent to solve environmental pollution problem. MXene-based composite photocatalysts show great promise, which utilize solar energy for purification. MXenes have excellent electrical conductivity, a large surface area due to their 2D structure, and surface functional groups beneficial for photocatalysis. In this review, various synthesis methods have been developed to prepare MXenes with different properties for specific applications, such as hydrofluoric acid etching, substitutes etching and molten fluoride etching. The influence of different groups on the performance of MXene have been determined. In photocatalytic reactions, modification strategies including heterojunction construction, doping, precious metal deposition and single atom anchor have been explored to enhance the photocatalytic performance of MXene-based composites. It is found that MXenes can act as support that limits photocatalyst size, enhance reactant adsorption, and functions as cocatalyst loaded onto semiconductors to improve charge separation. Our perspectives on the key challenges and future directions of developing high-performance MXene-based composite photocatalysts for environmental application are elaborated.\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cc00587f\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc00587f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

解决环境污染问题迫在眉睫。基于mxene的复合光催化剂利用太阳能进行净化,具有广阔的应用前景。MXenes具有优异的导电性,由于其二维结构而具有较大的表面积,以及有利于光催化的表面官能团。本文综述了各种合成方法,如氢氟酸蚀刻、替代蚀刻和熔融氟化物蚀刻等,以制备具有不同性能的MXenes。确定了不同基团对MXene性能的影响。在光催化反应中,通过构建异质结、掺杂、贵金属沉积和单原子锚定等改性策略来提高mxene基复合材料的光催化性能。发现MXenes可以作为载体限制光催化剂的尺寸,增强反应物的吸附,并作为负载在半导体上的助催化剂来改善电荷分离。阐述了开发高性能环境用mxene基复合光催化剂的主要挑战和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering space dimensional and surface chemistry of MXene-based nanocomposite photocatalysts for sustainable environmental application
It is very urgent to solve environmental pollution problem. MXene-based composite photocatalysts show great promise, which utilize solar energy for purification. MXenes have excellent electrical conductivity, a large surface area due to their 2D structure, and surface functional groups beneficial for photocatalysis. In this review, various synthesis methods have been developed to prepare MXenes with different properties for specific applications, such as hydrofluoric acid etching, substitutes etching and molten fluoride etching. The influence of different groups on the performance of MXene have been determined. In photocatalytic reactions, modification strategies including heterojunction construction, doping, precious metal deposition and single atom anchor have been explored to enhance the photocatalytic performance of MXene-based composites. It is found that MXenes can act as support that limits photocatalyst size, enhance reactant adsorption, and functions as cocatalyst loaded onto semiconductors to improve charge separation. Our perspectives on the key challenges and future directions of developing high-performance MXene-based composite photocatalysts for environmental application are elaborated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信