Roman A Khalaniya, Valeriy Verchenko, Andrey V. Mironov, Alexander N. Samarin, Alexey Bogach, Aleksandr Kulchu, Alexey O. Polevik, Wei Zheng, Evgeny V. Dikarev, Raivo Stern, Andrei V Shevelkov
{"title":"Fe32+δGe35−xSix中kagome晶格断裂的自旋取向和磁挫败","authors":"Roman A Khalaniya, Valeriy Verchenko, Andrey V. Mironov, Alexander N. Samarin, Alexey Bogach, Aleksandr Kulchu, Alexey O. Polevik, Wei Zheng, Evgeny V. Dikarev, Raivo Stern, Andrei V Shevelkov","doi":"10.1039/d5dt00654f","DOIUrl":null,"url":null,"abstract":"Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> was synthesized using solid-state and chemical vapor transport reactions both in powder and single crystalline forms. Single crystal and high-resolution powder X-ray diffraction experiments revealed Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> to be a third member of the Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>E<small><sub>x</sub></small> (E = <em>p</em>-element) family of ternary compounds alongside Fe<small><sub>32+δ</sub></small>Ge<small><sub>33</sub></small>As<small><sub>2</sub></small> and Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>P<small><sub>x</sub></small>. Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> features a two-dimensional intergrowth structure of two parent structure types: MgFe<small><sub>6</sub></small>Ge<small><sub>6</sub></small> and Co<small><sub>2</sub></small>Al<small><sub>5</sub></small>. Similarly to the other members, the stabilisation of the intergrowth structure in Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> occurs as a result of the p-element substitution in the MgFe<small><sub>6</sub></small>Ge<small><sub>6</sub></small>-type block. The intergrowth breaks the kagome net of MgFe<small><sub>6</sub></small>Ge<small><sub>6</sub></small> into individual hexagrams, while providing additional layers of geometrically frustrated atomic arrangements. Magnetic measurements showed antiferromagnetic ordering at <em>T</em><small><sub>N</sub></small> ~ 150–160 K and spin reorientation below 80–90 K owing to the competition between magnetic interactions in the frustrated magnetic lattice of Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small>.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"41 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin reorientation and magnetic frustration in Fe32+δGe35−xSix with a kagome lattice broken by crystallographic intergrowth\",\"authors\":\"Roman A Khalaniya, Valeriy Verchenko, Andrey V. Mironov, Alexander N. Samarin, Alexey Bogach, Aleksandr Kulchu, Alexey O. Polevik, Wei Zheng, Evgeny V. Dikarev, Raivo Stern, Andrei V Shevelkov\",\"doi\":\"10.1039/d5dt00654f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> was synthesized using solid-state and chemical vapor transport reactions both in powder and single crystalline forms. Single crystal and high-resolution powder X-ray diffraction experiments revealed Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> to be a third member of the Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>E<small><sub>x</sub></small> (E = <em>p</em>-element) family of ternary compounds alongside Fe<small><sub>32+δ</sub></small>Ge<small><sub>33</sub></small>As<small><sub>2</sub></small> and Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>P<small><sub>x</sub></small>. Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> features a two-dimensional intergrowth structure of two parent structure types: MgFe<small><sub>6</sub></small>Ge<small><sub>6</sub></small> and Co<small><sub>2</sub></small>Al<small><sub>5</sub></small>. Similarly to the other members, the stabilisation of the intergrowth structure in Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small> occurs as a result of the p-element substitution in the MgFe<small><sub>6</sub></small>Ge<small><sub>6</sub></small>-type block. The intergrowth breaks the kagome net of MgFe<small><sub>6</sub></small>Ge<small><sub>6</sub></small> into individual hexagrams, while providing additional layers of geometrically frustrated atomic arrangements. Magnetic measurements showed antiferromagnetic ordering at <em>T</em><small><sub>N</sub></small> ~ 150–160 K and spin reorientation below 80–90 K owing to the competition between magnetic interactions in the frustrated magnetic lattice of Fe<small><sub>32+δ</sub></small>Ge<small><sub>35−x</sub></small>Si<small><sub>x</sub></small>.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5dt00654f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00654f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Spin reorientation and magnetic frustration in Fe32+δGe35−xSix with a kagome lattice broken by crystallographic intergrowth
Fe32+δGe35−xSix was synthesized using solid-state and chemical vapor transport reactions both in powder and single crystalline forms. Single crystal and high-resolution powder X-ray diffraction experiments revealed Fe32+δGe35−xSix to be a third member of the Fe32+δGe35−xEx (E = p-element) family of ternary compounds alongside Fe32+δGe33As2 and Fe32+δGe35−xPx. Fe32+δGe35−xSix features a two-dimensional intergrowth structure of two parent structure types: MgFe6Ge6 and Co2Al5. Similarly to the other members, the stabilisation of the intergrowth structure in Fe32+δGe35−xSix occurs as a result of the p-element substitution in the MgFe6Ge6-type block. The intergrowth breaks the kagome net of MgFe6Ge6 into individual hexagrams, while providing additional layers of geometrically frustrated atomic arrangements. Magnetic measurements showed antiferromagnetic ordering at TN ~ 150–160 K and spin reorientation below 80–90 K owing to the competition between magnetic interactions in the frustrated magnetic lattice of Fe32+δGe35−xSix.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.