Yue Zhang, Rongrong Zhang, Shuzhen Lyu, Xiangwei Ren, Guozhu Liu, Li Wang
{"title":"RF树脂在SBA-15@derived C上负载高度分散的Pd纳米颗粒,用于2-乙基蒽醌的加氢","authors":"Yue Zhang, Rongrong Zhang, Shuzhen Lyu, Xiangwei Ren, Guozhu Liu, Li Wang","doi":"10.1002/aic.18862","DOIUrl":null,"url":null,"abstract":"Supported Pd-based nanoparticles are widely regarded as the most effective catalysts for 2-ethylthraquinone hydrogenation. Herein, the heteroenergetic dual-supports were prepared by coating resorcinol-formaldehyde (RF) resin on mesoporous SBA-15 to regulate the growth and surface microenvironment of Pd. After calcination and reduction, phenolic hydroxyl groups in the residual carbon layer effectively reduced the Pd particle size, induced the formation of adjacent Pd<sup>0</sup>–Pd<sup>δ+</sup>, and created hydrophobicity. Density functional theory calculations revealed that Pd atoms preferentially interact with OH on C, rather than with OH on SBA-15, providing an intrinsic driving force for smaller Pd particle size. The mass ratio of RF to SBA-15 was shown to be a crucial parameter affecting the catalytic performance. At the ratio of 4 (carbon content of 2.02%) the catalyst possesses the smallest Pd particles, 30% Pd<sup>δ+</sup> proportion, and higher hydrophobicity, achieving the best catalytic performance, with an activity of 0.57 molH<sub>2</sub>·gPd<sup>−1</sup>·min<sup>−1</sup> and a selectivity of 95.3%.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly dispersed Pd nanoparticles supported on SBA-15@derived C from RF resin for hydrogenation of 2-ethylanthraquinone\",\"authors\":\"Yue Zhang, Rongrong Zhang, Shuzhen Lyu, Xiangwei Ren, Guozhu Liu, Li Wang\",\"doi\":\"10.1002/aic.18862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supported Pd-based nanoparticles are widely regarded as the most effective catalysts for 2-ethylthraquinone hydrogenation. Herein, the heteroenergetic dual-supports were prepared by coating resorcinol-formaldehyde (RF) resin on mesoporous SBA-15 to regulate the growth and surface microenvironment of Pd. After calcination and reduction, phenolic hydroxyl groups in the residual carbon layer effectively reduced the Pd particle size, induced the formation of adjacent Pd<sup>0</sup>–Pd<sup>δ+</sup>, and created hydrophobicity. Density functional theory calculations revealed that Pd atoms preferentially interact with OH on C, rather than with OH on SBA-15, providing an intrinsic driving force for smaller Pd particle size. The mass ratio of RF to SBA-15 was shown to be a crucial parameter affecting the catalytic performance. At the ratio of 4 (carbon content of 2.02%) the catalyst possesses the smallest Pd particles, 30% Pd<sup>δ+</sup> proportion, and higher hydrophobicity, achieving the best catalytic performance, with an activity of 0.57 molH<sub>2</sub>·gPd<sup>−1</sup>·min<sup>−1</sup> and a selectivity of 95.3%.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18862\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18862","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Highly dispersed Pd nanoparticles supported on SBA-15@derived C from RF resin for hydrogenation of 2-ethylanthraquinone
Supported Pd-based nanoparticles are widely regarded as the most effective catalysts for 2-ethylthraquinone hydrogenation. Herein, the heteroenergetic dual-supports were prepared by coating resorcinol-formaldehyde (RF) resin on mesoporous SBA-15 to regulate the growth and surface microenvironment of Pd. After calcination and reduction, phenolic hydroxyl groups in the residual carbon layer effectively reduced the Pd particle size, induced the formation of adjacent Pd0–Pdδ+, and created hydrophobicity. Density functional theory calculations revealed that Pd atoms preferentially interact with OH on C, rather than with OH on SBA-15, providing an intrinsic driving force for smaller Pd particle size. The mass ratio of RF to SBA-15 was shown to be a crucial parameter affecting the catalytic performance. At the ratio of 4 (carbon content of 2.02%) the catalyst possesses the smallest Pd particles, 30% Pdδ+ proportion, and higher hydrophobicity, achieving the best catalytic performance, with an activity of 0.57 molH2·gPd−1·min−1 and a selectivity of 95.3%.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.