{"title":"铜催化的均相烯炔环异构化反应:快速获得功能化吡咯","authors":"Kua-Fei Wei, Xiu-Hong Zhu, Guang-Xin Ru, Wen-Bo Shen","doi":"10.1002/adsc.202500303","DOIUrl":null,"url":null,"abstract":"Homogeneous transition-metal-catalyzed alkyne cascade cyclization reaction has attracted much attentions over the past decades. However, the relevant homogeneous transition-metal-catalyzed cyclization of allenynes has seldom been explored probably due to noticeable chemo-, regio-, and stereoselectivity. Described herein is an efficient homogeneous copper-catalyzed cycloisomerization reaction of allenynes, thus leading to a practical and atom-economic access to an array of valuable functionalized pyrroles by formal [3 + 2] cycloaddition via Cu-containing all-carbon 1,4-dipoles.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"7 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous Copper-Catalyzed Cycloisomerization Reaction of Allenynes: Rapid Access to Functionalized Pyrroles\",\"authors\":\"Kua-Fei Wei, Xiu-Hong Zhu, Guang-Xin Ru, Wen-Bo Shen\",\"doi\":\"10.1002/adsc.202500303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homogeneous transition-metal-catalyzed alkyne cascade cyclization reaction has attracted much attentions over the past decades. However, the relevant homogeneous transition-metal-catalyzed cyclization of allenynes has seldom been explored probably due to noticeable chemo-, regio-, and stereoselectivity. Described herein is an efficient homogeneous copper-catalyzed cycloisomerization reaction of allenynes, thus leading to a practical and atom-economic access to an array of valuable functionalized pyrroles by formal [3 + 2] cycloaddition via Cu-containing all-carbon 1,4-dipoles.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202500303\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202500303","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Homogeneous Copper-Catalyzed Cycloisomerization Reaction of Allenynes: Rapid Access to Functionalized Pyrroles
Homogeneous transition-metal-catalyzed alkyne cascade cyclization reaction has attracted much attentions over the past decades. However, the relevant homogeneous transition-metal-catalyzed cyclization of allenynes has seldom been explored probably due to noticeable chemo-, regio-, and stereoselectivity. Described herein is an efficient homogeneous copper-catalyzed cycloisomerization reaction of allenynes, thus leading to a practical and atom-economic access to an array of valuable functionalized pyrroles by formal [3 + 2] cycloaddition via Cu-containing all-carbon 1,4-dipoles.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.