Yuankai Li, Jaekyum Kim, Won Tae Hong, Jun Young Kim, Qian Lei, Hyungu Han, Unbeom Baeck, Dong Hyun Kim, Chang Hyuck Choi, Byung-Hyun Kim, Chan-Hwa Chung, Jung Kyu Kim
{"title":"CuWO4上低价双金属覆盖层对乳酸的高选择性光电电化学甘油增值","authors":"Yuankai Li, Jaekyum Kim, Won Tae Hong, Jun Young Kim, Qian Lei, Hyungu Han, Unbeom Baeck, Dong Hyun Kim, Chang Hyuck Choi, Byung-Hyun Kim, Chan-Hwa Chung, Jung Kyu Kim","doi":"10.1021/acsenergylett.5c00551","DOIUrl":null,"url":null,"abstract":"Selective glycerol valorization to lactic acid is a promising approach for upgrading biomass-derived waste into value-added chemicals. Herein, we demonstrate photoelectrochemical lactic acid production via glycerol oxidation using a surface-reconstructed n-type CuWO<sub>4</sub> photoanode (R-CuWO<sub>4</sub>). The R-CuWO<sub>4</sub> exhibits a solution selectivity of 95.9%, a yield rate of 159.8 mmol m<sup>–2</sup> h<sup>–1</sup>, and a Faraday efficiency of 59.5%. The reconstructed surface overlayer improves catalytic kinetics, reducing the overpotential and increasing the glycerol conversion rate. Additionally, the presence of low-valence copper in the overlayer tailors the reaction pathway, favoring lactic acid formation. Density functional theory calculations reveal that this effect is associated with a change in the glycerol adsorption configuration from terminal to middle hydroxyl groups on the reduced Cu sites in R-CuWO<sub>4</sub>. Our findings suggest that surface engineering through electrochemical treatment can control the adsorption behavior and guide product selectivity in photoelectrochemical biomass conversion.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"1 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Selective Photoelectrochemical Glycerol Valorization toward Lactic Acid with Low-Valence Bimetallic Overlayer on CuWO4\",\"authors\":\"Yuankai Li, Jaekyum Kim, Won Tae Hong, Jun Young Kim, Qian Lei, Hyungu Han, Unbeom Baeck, Dong Hyun Kim, Chang Hyuck Choi, Byung-Hyun Kim, Chan-Hwa Chung, Jung Kyu Kim\",\"doi\":\"10.1021/acsenergylett.5c00551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective glycerol valorization to lactic acid is a promising approach for upgrading biomass-derived waste into value-added chemicals. Herein, we demonstrate photoelectrochemical lactic acid production via glycerol oxidation using a surface-reconstructed n-type CuWO<sub>4</sub> photoanode (R-CuWO<sub>4</sub>). The R-CuWO<sub>4</sub> exhibits a solution selectivity of 95.9%, a yield rate of 159.8 mmol m<sup>–2</sup> h<sup>–1</sup>, and a Faraday efficiency of 59.5%. The reconstructed surface overlayer improves catalytic kinetics, reducing the overpotential and increasing the glycerol conversion rate. Additionally, the presence of low-valence copper in the overlayer tailors the reaction pathway, favoring lactic acid formation. Density functional theory calculations reveal that this effect is associated with a change in the glycerol adsorption configuration from terminal to middle hydroxyl groups on the reduced Cu sites in R-CuWO<sub>4</sub>. Our findings suggest that surface engineering through electrochemical treatment can control the adsorption behavior and guide product selectivity in photoelectrochemical biomass conversion.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c00551\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Highly Selective Photoelectrochemical Glycerol Valorization toward Lactic Acid with Low-Valence Bimetallic Overlayer on CuWO4
Selective glycerol valorization to lactic acid is a promising approach for upgrading biomass-derived waste into value-added chemicals. Herein, we demonstrate photoelectrochemical lactic acid production via glycerol oxidation using a surface-reconstructed n-type CuWO4 photoanode (R-CuWO4). The R-CuWO4 exhibits a solution selectivity of 95.9%, a yield rate of 159.8 mmol m–2 h–1, and a Faraday efficiency of 59.5%. The reconstructed surface overlayer improves catalytic kinetics, reducing the overpotential and increasing the glycerol conversion rate. Additionally, the presence of low-valence copper in the overlayer tailors the reaction pathway, favoring lactic acid formation. Density functional theory calculations reveal that this effect is associated with a change in the glycerol adsorption configuration from terminal to middle hydroxyl groups on the reduced Cu sites in R-CuWO4. Our findings suggest that surface engineering through electrochemical treatment can control the adsorption behavior and guide product selectivity in photoelectrochemical biomass conversion.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.