Tianyu Zhu, Ruishi Lei, Bowen Wang, Tianyi Du, Wei Xia, Yun Liu
{"title":"高性能可回收聚二硫醚的生物源4-芳基-1,2-二硫烷","authors":"Tianyu Zhu, Ruishi Lei, Bowen Wang, Tianyi Du, Wei Xia, Yun Liu","doi":"10.1002/anie.202503677","DOIUrl":null,"url":null,"abstract":"<p>The development of recyclable polymers presents a solution to the urgent issues of circular plastics economy. To this end, there is an increasing interest in expanding the utility of poly(disulfide)s, which contains dynamic covalent S─S bonds to enable intrinsic degradability. Lipoic acid and its derivatives represent the most widely used class of monomers for the preparation of poly(disulfide)s. However, their physical properties are usually on the soft side of thermoplastics and can face challenges in wider applications. In this contribution, we report a scalable synthesis of a new class of aryl-substituted 1,2-dithiolane monomers from bio-sourced phenol ethers and their ring-opening polymerization to aryl-substituted poly(disulfide)s. The aryl-substituted poly(disulfide)s display high recyclability without the cost of stability. The introduction of aryl side chains systematically improves the thermal properties of poly(disulfide)s. The optical properties of aryl-substituted poly(disulfide)s are competitive and so are the mechanical properties of the crosslinked network, showing potential for applications in sustainable materials.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 26","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-Sourced 4-Aryl-1,2-Dithiolanes for Recyclable Poly(disulfide)s with High Performance\",\"authors\":\"Tianyu Zhu, Ruishi Lei, Bowen Wang, Tianyi Du, Wei Xia, Yun Liu\",\"doi\":\"10.1002/anie.202503677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of recyclable polymers presents a solution to the urgent issues of circular plastics economy. To this end, there is an increasing interest in expanding the utility of poly(disulfide)s, which contains dynamic covalent S─S bonds to enable intrinsic degradability. Lipoic acid and its derivatives represent the most widely used class of monomers for the preparation of poly(disulfide)s. However, their physical properties are usually on the soft side of thermoplastics and can face challenges in wider applications. In this contribution, we report a scalable synthesis of a new class of aryl-substituted 1,2-dithiolane monomers from bio-sourced phenol ethers and their ring-opening polymerization to aryl-substituted poly(disulfide)s. The aryl-substituted poly(disulfide)s display high recyclability without the cost of stability. The introduction of aryl side chains systematically improves the thermal properties of poly(disulfide)s. The optical properties of aryl-substituted poly(disulfide)s are competitive and so are the mechanical properties of the crosslinked network, showing potential for applications in sustainable materials.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 26\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202503677\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202503677","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bio-Sourced 4-Aryl-1,2-Dithiolanes for Recyclable Poly(disulfide)s with High Performance
The development of recyclable polymers presents a solution to the urgent issues of circular plastics economy. To this end, there is an increasing interest in expanding the utility of poly(disulfide)s, which contains dynamic covalent S─S bonds to enable intrinsic degradability. Lipoic acid and its derivatives represent the most widely used class of monomers for the preparation of poly(disulfide)s. However, their physical properties are usually on the soft side of thermoplastics and can face challenges in wider applications. In this contribution, we report a scalable synthesis of a new class of aryl-substituted 1,2-dithiolane monomers from bio-sourced phenol ethers and their ring-opening polymerization to aryl-substituted poly(disulfide)s. The aryl-substituted poly(disulfide)s display high recyclability without the cost of stability. The introduction of aryl side chains systematically improves the thermal properties of poly(disulfide)s. The optical properties of aryl-substituted poly(disulfide)s are competitive and so are the mechanical properties of the crosslinked network, showing potential for applications in sustainable materials.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.