扩大带弯并促进光催化氢气进化的 SrTiO3-x/ZnxNi1-xIn2S4 异质纳米纤维的协同界面工程设计

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jie Liu , Mengxia Cui , Xinghua Li , Wenbo Wang , Xiaowei Li , Shuai Liu , Hancheng Zhu , Changlu Shao , Yichun Liu
{"title":"扩大带弯并促进光催化氢气进化的 SrTiO3-x/ZnxNi1-xIn2S4 异质纳米纤维的协同界面工程设计","authors":"Jie Liu ,&nbsp;Mengxia Cui ,&nbsp;Xinghua Li ,&nbsp;Wenbo Wang ,&nbsp;Xiaowei Li ,&nbsp;Shuai Liu ,&nbsp;Hancheng Zhu ,&nbsp;Changlu Shao ,&nbsp;Yichun Liu","doi":"10.1016/j.nanoen.2025.111015","DOIUrl":null,"url":null,"abstract":"<div><div>Synergistic interfacial engineering in heterostructures offers significant potential for enhancing photocatalytic hydrogen evolution. However, reports remain limited due to the challenges of simultaneously tuning the electronic structures of both components in heterojunctions at the nanoscale. In this work, we introduce a stepwise approach to synergistic modulate the interfacial energy band structures in a hetero-nanofiber system. SrTiO<sub>3-x</sub> nanofibers modified through surface oxygen defect engineering, are combined with Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> via a solid solution engineered, to form SrTiO<sub>3-x</sub>/Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> hetero-nanofibers. The band positions of SrTiO<sub>3-x</sub> nanofibers shift upward, while those of Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> shift downward, leading to a larger conduction and valence band offset, enlarged interfacial band bending, and enhanced light absorption. The SrTiO<sub>3-x</sub>/Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> hetero-nanofibers exhibit an enhanced built-in electric field intensity at the interface about 2–3 times compared with SrTiO<sub>3</sub>/ZnIn<sub>2</sub>S<sub>4</sub> hetero-nanofibers without synergistic interfacial engineering. These hetero-nanofibers exhibited an ultrahigh H<sub>2</sub> production rate of 14.79 mmol g⁻¹ h⁻¹ an improvement of approximately 11 times than SrTiO<sub>3</sub>/ZnIn<sub>2</sub>S<sub>4</sub> hetero-nanofibers and 87 times than pure ZnIn<sub>2</sub>S<sub>4</sub> under the simulated solar light, and achieving a remarkable apparent quantum efficiency of 55.34 % at 350 nm. This synergistic interfacial engineering is promising for developing novel photocatalytic systems with enlarged band bending and enhanced interfacial electric field for efficient charge separation.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"140 ","pages":"Article 111015"},"PeriodicalIF":16.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic interfacial engineering of SrTiO3-x/ZnxNi1-xIn2S4 hetero-nanofibers for enlarging the band bending and boosting photocatalytic hydrogen evolution\",\"authors\":\"Jie Liu ,&nbsp;Mengxia Cui ,&nbsp;Xinghua Li ,&nbsp;Wenbo Wang ,&nbsp;Xiaowei Li ,&nbsp;Shuai Liu ,&nbsp;Hancheng Zhu ,&nbsp;Changlu Shao ,&nbsp;Yichun Liu\",\"doi\":\"10.1016/j.nanoen.2025.111015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Synergistic interfacial engineering in heterostructures offers significant potential for enhancing photocatalytic hydrogen evolution. However, reports remain limited due to the challenges of simultaneously tuning the electronic structures of both components in heterojunctions at the nanoscale. In this work, we introduce a stepwise approach to synergistic modulate the interfacial energy band structures in a hetero-nanofiber system. SrTiO<sub>3-x</sub> nanofibers modified through surface oxygen defect engineering, are combined with Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> via a solid solution engineered, to form SrTiO<sub>3-x</sub>/Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> hetero-nanofibers. The band positions of SrTiO<sub>3-x</sub> nanofibers shift upward, while those of Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> shift downward, leading to a larger conduction and valence band offset, enlarged interfacial band bending, and enhanced light absorption. The SrTiO<sub>3-x</sub>/Zn<sub>x</sub>Ni<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> hetero-nanofibers exhibit an enhanced built-in electric field intensity at the interface about 2–3 times compared with SrTiO<sub>3</sub>/ZnIn<sub>2</sub>S<sub>4</sub> hetero-nanofibers without synergistic interfacial engineering. These hetero-nanofibers exhibited an ultrahigh H<sub>2</sub> production rate of 14.79 mmol g⁻¹ h⁻¹ an improvement of approximately 11 times than SrTiO<sub>3</sub>/ZnIn<sub>2</sub>S<sub>4</sub> hetero-nanofibers and 87 times than pure ZnIn<sub>2</sub>S<sub>4</sub> under the simulated solar light, and achieving a remarkable apparent quantum efficiency of 55.34 % at 350 nm. This synergistic interfacial engineering is promising for developing novel photocatalytic systems with enlarged band bending and enhanced interfacial electric field for efficient charge separation.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"140 \",\"pages\":\"Article 111015\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221128552500374X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221128552500374X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

异质结构中的协同界面工程为提高光催化氢气进化提供了巨大潜力。然而,由于在纳米尺度上同时调整异质结中两种成分的电子结构所面临的挑战,相关报道仍然有限。在这项工作中,我们介绍了一种逐步协同调节异质纳米纤维系统中界面能带结构的方法。通过表面氧缺陷工程修饰的 SrTiO3-x 纳米纤维与 ZnxNi1-xIn2S4 通过固溶体工程结合,形成 SrTiO3-x/ZnxNi1-xIn2S4 异质纳米纤维。SrTiO3-x 纳米纤维的能带位置向上移动,而 ZnxNi1-xIn2S4 的能带位置向下移动,从而导致更大的导带和价带偏移、更大的界面能带弯曲和更强的光吸收。与没有协同界面工程的 SrTiO3/ZnxNi1-xIn2S4 异质纳米纤维相比,SrTiO3-x/ZnxNi1-xIn2S4 异质纳米纤维在界面上的内置电场强度增强了约 2-3 倍。在模拟太阳光下,这些异质纳米纤维表现出 14.79 mmol g-¹ h-¹ 的超高 H2 产率,比 SrTiO3/ZnIn2S4 异质纳米纤维提高了约 11 倍,比纯 ZnIn2S4 提高了 87 倍,并在 350 纳米波长下实现了 55.34% 的显著表观量子效率。这种协同界面工程有望开发出具有扩大带弯曲和增强界面电场以实现高效电荷分离的新型光催化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic interfacial engineering of SrTiO3-x/ZnxNi1-xIn2S4 hetero-nanofibers for enlarging the band bending and boosting photocatalytic hydrogen evolution

Synergistic interfacial engineering of SrTiO3-x/ZnxNi1-xIn2S4 hetero-nanofibers for enlarging the band bending and boosting photocatalytic hydrogen evolution
Synergistic interfacial engineering in heterostructures offers significant potential for enhancing photocatalytic hydrogen evolution. However, reports remain limited due to the challenges of simultaneously tuning the electronic structures of both components in heterojunctions at the nanoscale. In this work, we introduce a stepwise approach to synergistic modulate the interfacial energy band structures in a hetero-nanofiber system. SrTiO3-x nanofibers modified through surface oxygen defect engineering, are combined with ZnxNi1-xIn2S4 via a solid solution engineered, to form SrTiO3-x/ZnxNi1-xIn2S4 hetero-nanofibers. The band positions of SrTiO3-x nanofibers shift upward, while those of ZnxNi1-xIn2S4 shift downward, leading to a larger conduction and valence band offset, enlarged interfacial band bending, and enhanced light absorption. The SrTiO3-x/ZnxNi1-xIn2S4 hetero-nanofibers exhibit an enhanced built-in electric field intensity at the interface about 2–3 times compared with SrTiO3/ZnIn2S4 hetero-nanofibers without synergistic interfacial engineering. These hetero-nanofibers exhibited an ultrahigh H2 production rate of 14.79 mmol g⁻¹ h⁻¹ an improvement of approximately 11 times than SrTiO3/ZnIn2S4 hetero-nanofibers and 87 times than pure ZnIn2S4 under the simulated solar light, and achieving a remarkable apparent quantum efficiency of 55.34 % at 350 nm. This synergistic interfacial engineering is promising for developing novel photocatalytic systems with enlarged band bending and enhanced interfacial electric field for efficient charge separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信