铁电-反铁电固溶体中的Skyrmion纳米畴

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Weijie Zheng, Xingyue Ma, Zhentao Pang, Yifeng Ren, Hongying Chen, Jibo Xu, Chunyan Zheng, Jianyi Liu, Xiaohui Liu, Yu Deng, Yuefeng Nie, Di Wu, Laurent Bellaiche, Yurong Yang, Zheng Wen
{"title":"铁电-反铁电固溶体中的Skyrmion纳米畴","authors":"Weijie Zheng, Xingyue Ma, Zhentao Pang, Yifeng Ren, Hongying Chen, Jibo Xu, Chunyan Zheng, Jianyi Liu, Xiaohui Liu, Yu Deng, Yuefeng Nie, Di Wu, Laurent Bellaiche, Yurong Yang, Zheng Wen","doi":"10.1038/s41563-025-02216-8","DOIUrl":null,"url":null,"abstract":"<p>Polar skyrmions have demonstrated rich physics and exotic properties for developing novel functionalities. However, so far, skyrmion nanodomains exist only in a few material systems, such as ferroelectric/dielectric superlattices, free-standing PbTiO<sub>3</sub>/SrTiO<sub>3</sub> epitaxial bilayers and ultrathin Pb(Zr,Ti)O<sub>3</sub>/SrTiO<sub>3</sub>/Pb(Zr,Ti)O<sub>3</sub> sandwiches. These heterostructures are fabricated with elaborately designed boundary conditions to meet the delicate energy balance for stabilizing topological phases. This requirement limits the broad applications of skyrmions in electronic devices. Here we show widespread skyrmion nanodomains in ferroelectric–antiferroelectric solid solutions, composed of ferroelectric PbTiO<sub>3</sub> and one antiferroelectric PbSnO<sub>3</sub> (Pb(Ti<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>)O<sub>3</sub>), PbHfO<sub>3</sub> (Pb(Ti<sub>1–<i>x</i></sub>Hf<sub><i>x</i></sub>)O<sub>3</sub>) or PbZrO<sub>3</sub> (Pb(Ti<sub>1–<i>x</i></sub>Zr<sub><i>x</i></sub>)O<sub>3</sub>). The skyrmionic textures are formed by engineering dipole–dipole and antiferrodistortive–dipole couplings in competition between ferroelectric and antiferroelectric polar orderings, allowing the stabilization of topological phases. A phase diagram is built for the three solid solution series, revealing the stabilization regions of skyrmion nanodomains. In addition, the non-trivial domains also exhibit improved switching character, reversible writing/erasure and long-term retention for the electrical manipulation of polar configurations. These findings open an avenue for the investigation and exploitation of polar skyrmions in ferroelectric-based materials, providing opportunities in topological electronics.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"26 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skyrmion nanodomains in ferroelectric–antiferroelectric solid solutions\",\"authors\":\"Weijie Zheng, Xingyue Ma, Zhentao Pang, Yifeng Ren, Hongying Chen, Jibo Xu, Chunyan Zheng, Jianyi Liu, Xiaohui Liu, Yu Deng, Yuefeng Nie, Di Wu, Laurent Bellaiche, Yurong Yang, Zheng Wen\",\"doi\":\"10.1038/s41563-025-02216-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polar skyrmions have demonstrated rich physics and exotic properties for developing novel functionalities. However, so far, skyrmion nanodomains exist only in a few material systems, such as ferroelectric/dielectric superlattices, free-standing PbTiO<sub>3</sub>/SrTiO<sub>3</sub> epitaxial bilayers and ultrathin Pb(Zr,Ti)O<sub>3</sub>/SrTiO<sub>3</sub>/Pb(Zr,Ti)O<sub>3</sub> sandwiches. These heterostructures are fabricated with elaborately designed boundary conditions to meet the delicate energy balance for stabilizing topological phases. This requirement limits the broad applications of skyrmions in electronic devices. Here we show widespread skyrmion nanodomains in ferroelectric–antiferroelectric solid solutions, composed of ferroelectric PbTiO<sub>3</sub> and one antiferroelectric PbSnO<sub>3</sub> (Pb(Ti<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>)O<sub>3</sub>), PbHfO<sub>3</sub> (Pb(Ti<sub>1–<i>x</i></sub>Hf<sub><i>x</i></sub>)O<sub>3</sub>) or PbZrO<sub>3</sub> (Pb(Ti<sub>1–<i>x</i></sub>Zr<sub><i>x</i></sub>)O<sub>3</sub>). The skyrmionic textures are formed by engineering dipole–dipole and antiferrodistortive–dipole couplings in competition between ferroelectric and antiferroelectric polar orderings, allowing the stabilization of topological phases. A phase diagram is built for the three solid solution series, revealing the stabilization regions of skyrmion nanodomains. In addition, the non-trivial domains also exhibit improved switching character, reversible writing/erasure and long-term retention for the electrical manipulation of polar configurations. These findings open an avenue for the investigation and exploitation of polar skyrmions in ferroelectric-based materials, providing opportunities in topological electronics.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02216-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02216-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

极地天空已经展示了丰富的物理和奇异的特性来开发新的功能。然而,到目前为止,skyrmion纳米畴只存在于少数材料体系中,如铁电/介电超晶格、独立的PbTiO3/SrTiO3外延双层层和超薄Pb(Zr,Ti)O3/SrTiO3/Pb(Zr,Ti)O3三明治。这些异质结构是在精心设计的边界条件下制造的,以满足稳定拓扑相的微妙能量平衡。这一要求限制了skyrmins在电子设备中的广泛应用。在铁电-反铁电固溶体中,我们发现了广泛存在的skyrmion纳米畴,该固溶体由铁电PbTiO3和一种反铁电PbSnO3 (Pb(Ti1-xSnx)O3)、pbbhfo3 (Pb(Ti1-xHfx)O3)或PbZrO3 (Pb(Ti1-xZrx)O3)组成。在铁电和反铁电极性序之间的竞争中,通过工程偶极-偶极和反铁畸变-偶极耦合形成了skyronic织构,允许拓扑相的稳定。建立了三个固溶体系列的相图,揭示了skyrmion纳米畴的稳定区域。此外,非平凡畴还表现出改进的开关特性,可逆写入/擦除以及极性构型的长期保留。这些发现为研究和开发铁电基材料中的极性skyrmions开辟了一条道路,为拓扑电子学提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Skyrmion nanodomains in ferroelectric–antiferroelectric solid solutions

Skyrmion nanodomains in ferroelectric–antiferroelectric solid solutions

Polar skyrmions have demonstrated rich physics and exotic properties for developing novel functionalities. However, so far, skyrmion nanodomains exist only in a few material systems, such as ferroelectric/dielectric superlattices, free-standing PbTiO3/SrTiO3 epitaxial bilayers and ultrathin Pb(Zr,Ti)O3/SrTiO3/Pb(Zr,Ti)O3 sandwiches. These heterostructures are fabricated with elaborately designed boundary conditions to meet the delicate energy balance for stabilizing topological phases. This requirement limits the broad applications of skyrmions in electronic devices. Here we show widespread skyrmion nanodomains in ferroelectric–antiferroelectric solid solutions, composed of ferroelectric PbTiO3 and one antiferroelectric PbSnO3 (Pb(Ti1–xSnx)O3), PbHfO3 (Pb(Ti1–xHfx)O3) or PbZrO3 (Pb(Ti1–xZrx)O3). The skyrmionic textures are formed by engineering dipole–dipole and antiferrodistortive–dipole couplings in competition between ferroelectric and antiferroelectric polar orderings, allowing the stabilization of topological phases. A phase diagram is built for the three solid solution series, revealing the stabilization regions of skyrmion nanodomains. In addition, the non-trivial domains also exhibit improved switching character, reversible writing/erasure and long-term retention for the electrical manipulation of polar configurations. These findings open an avenue for the investigation and exploitation of polar skyrmions in ferroelectric-based materials, providing opportunities in topological electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信