土壤科学中的人工智能

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Alexandre M. J.-C. Wadoux
{"title":"土壤科学中的人工智能","authors":"Alexandre M. J.-C. Wadoux","doi":"10.1111/ejss.70080","DOIUrl":null,"url":null,"abstract":"<p>Few would disagree that artificial intelligence (AI) holds potential for advancing knowledge and innovation. Over the past decades, substantial research has been devoted to the development and application of AI in soil science. While most of today's AI applications in soil science are related to machine learning (ML), AI also encompasses other fields such as digital image analysis, natural language processing (NLP), expert systems, and knowledge representation. This review aims to provide a comprehensive overview of AI in soil science. A definition of AI that equates intelligence with rationality is provided, followed by a typical classification of AI into the three main domains of sensing and interacting, reasoning and decision-making, and learning and predicting. From this framework, a taxonomy of AI in soil research is derived and serves as a basis for a literature review. The major findings are as follows: i) AI in soil science is diverse, with applications in decision support systems, image classification, prediction with ML and expert systems; ii) AI in soil science is currently almost exclusively characterized by ML; iii) applications of ML are predominantly found in the field of digital soil mapping and for the development of pedotransfer functions; and iv) most AI applications are used for prediction purposes. A few notable exceptions stand apart from mainstream applications, particularly in the realms of NLP, the development of soil cognitive models, and interpretable ML. Based on these findings, I discuss attention points, such as using AI almost exclusively for prediction at the expense of explanation and the lack of integration of soil knowledge in algorithmic AI solutions. I envision that future developments could include the use of AI for text recognition of legacy soil profile data, providing a new source of soil information. Another promising line of research is the language processing of soil texts to build meta-analyses that summarize the growing body of soil science literature. These new applications could foster substantial new contributions to soil science research.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70080","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in soil science\",\"authors\":\"Alexandre M. J.-C. Wadoux\",\"doi\":\"10.1111/ejss.70080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Few would disagree that artificial intelligence (AI) holds potential for advancing knowledge and innovation. Over the past decades, substantial research has been devoted to the development and application of AI in soil science. While most of today's AI applications in soil science are related to machine learning (ML), AI also encompasses other fields such as digital image analysis, natural language processing (NLP), expert systems, and knowledge representation. This review aims to provide a comprehensive overview of AI in soil science. A definition of AI that equates intelligence with rationality is provided, followed by a typical classification of AI into the three main domains of sensing and interacting, reasoning and decision-making, and learning and predicting. From this framework, a taxonomy of AI in soil research is derived and serves as a basis for a literature review. The major findings are as follows: i) AI in soil science is diverse, with applications in decision support systems, image classification, prediction with ML and expert systems; ii) AI in soil science is currently almost exclusively characterized by ML; iii) applications of ML are predominantly found in the field of digital soil mapping and for the development of pedotransfer functions; and iv) most AI applications are used for prediction purposes. A few notable exceptions stand apart from mainstream applications, particularly in the realms of NLP, the development of soil cognitive models, and interpretable ML. Based on these findings, I discuss attention points, such as using AI almost exclusively for prediction at the expense of explanation and the lack of integration of soil knowledge in algorithmic AI solutions. I envision that future developments could include the use of AI for text recognition of legacy soil profile data, providing a new source of soil information. Another promising line of research is the language processing of soil texts to build meta-analyses that summarize the growing body of soil science literature. These new applications could foster substantial new contributions to soil science research.</p>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"76 2\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70080\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70080","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

几乎没有人不同意人工智能(AI)在推进知识和创新方面的潜力。在过去的几十年里,人工智能在土壤科学中的发展和应用得到了大量的研究。虽然今天大多数人工智能在土壤科学中的应用都与机器学习(ML)有关,但人工智能还包括其他领域,如数字图像分析、自然语言处理(NLP)、专家系统和知识表示。本文综述了人工智能在土壤科学中的研究进展。本文给出了人工智能的定义,将智能等同于理性,然后将人工智能分为三个主要领域:感知和互动、推理和决策、学习和预测。从这个框架出发,推导了土壤研究中人工智能的分类,并作为文献综述的基础。主要发现如下:i)人工智能在土壤科学中的应用是多样化的,包括决策支持系统、图像分类、机器学习预测和专家系统;ii)土壤科学中的人工智能目前几乎完全以ML为特征;iii)机器学习的应用主要在数字土壤制图和土壤转移函数的开发领域;iv)大多数人工智能应用程序用于预测目的。除了主流应用之外,还有一些值得注意的例外,特别是在NLP领域,土壤认知模型的开发和可解释的ML。基于这些发现,我讨论了注意点,例如几乎完全使用人工智能进行预测而牺牲了解释,以及在算法人工智能解决方案中缺乏土壤知识的集成。我设想未来的发展可能包括使用人工智能对遗留土壤剖面数据进行文本识别,提供新的土壤信息来源。另一个有前途的研究方向是土壤文本的语言处理,以建立荟萃分析,总结土壤科学文献的增长体。这些新的应用可以为土壤科学研究做出实质性的新贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence in soil science

Artificial intelligence in soil science

Few would disagree that artificial intelligence (AI) holds potential for advancing knowledge and innovation. Over the past decades, substantial research has been devoted to the development and application of AI in soil science. While most of today's AI applications in soil science are related to machine learning (ML), AI also encompasses other fields such as digital image analysis, natural language processing (NLP), expert systems, and knowledge representation. This review aims to provide a comprehensive overview of AI in soil science. A definition of AI that equates intelligence with rationality is provided, followed by a typical classification of AI into the three main domains of sensing and interacting, reasoning and decision-making, and learning and predicting. From this framework, a taxonomy of AI in soil research is derived and serves as a basis for a literature review. The major findings are as follows: i) AI in soil science is diverse, with applications in decision support systems, image classification, prediction with ML and expert systems; ii) AI in soil science is currently almost exclusively characterized by ML; iii) applications of ML are predominantly found in the field of digital soil mapping and for the development of pedotransfer functions; and iv) most AI applications are used for prediction purposes. A few notable exceptions stand apart from mainstream applications, particularly in the realms of NLP, the development of soil cognitive models, and interpretable ML. Based on these findings, I discuss attention points, such as using AI almost exclusively for prediction at the expense of explanation and the lack of integration of soil knowledge in algorithmic AI solutions. I envision that future developments could include the use of AI for text recognition of legacy soil profile data, providing a new source of soil information. Another promising line of research is the language processing of soil texts to build meta-analyses that summarize the growing body of soil science literature. These new applications could foster substantial new contributions to soil science research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信