Piotr Stanisław Zieliński, Zhaohang Zhang, Ilaria Squillante, Guillermo Monreal Santiago, Marcus Koch, Giuseppe Portale, Marleen Kamperman, Anastasiia Krushynska, Małgorzata Katarzyna Włodarczyk-Biegun
{"title":"巧妙设计:了解熔融电铸支架的结晶度","authors":"Piotr Stanisław Zieliński, Zhaohang Zhang, Ilaria Squillante, Guillermo Monreal Santiago, Marcus Koch, Giuseppe Portale, Marleen Kamperman, Anastasiia Krushynska, Małgorzata Katarzyna Włodarczyk-Biegun","doi":"10.1002/elsc.70020","DOIUrl":null,"url":null,"abstract":"<p>Melt Electrowriting (MEW) is a powerful technique in tissue engineering, enabling the precise fabrication of scaffolds with complex geometries. One of the most important parameters of MEW is collector speed, which has been extensively studied in relation to critical translation speed. However, its influence on crystallinity was overlooked. Crystallinity is crucial for the mechanical properties and degradation behavior of the scaffolds. Therefore, in this study, we present how printing affects the crystallinity of fibers and the resulting mechanical properties of MEW scaffolds. In systematic analysis, we observed a significant reduction in scaffold crystallinity with increased speed, as evidenced by wide-angle X-ray scattering. This decrease in crystallinity was attributed to differences in cooling rates, impacting the polycaprolactone molecular orientation within the fibers. By using tensile testing, we observed the decrease in scaffold Young's modulus with increasing collector speed. Given the relation between crystallinity and mechanical properties of the material, we developed a finite element analysis model that accounts for changes in crystallinity by employing distinct bulk Young's modulus values to help characterize scaffold mechanical behavior under tensile loading. The model reveals insights into scaffold stiffness variation with different architectural designs. These insights offer valuable guidance for optimizing 3D printing to obtain scaffolds with desired mechanical properties.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70020","citationCount":"0","resultStr":"{\"title\":\"Designing Smartly: Understanding the Crystallinity of Melt Electrowritten Scaffolds\",\"authors\":\"Piotr Stanisław Zieliński, Zhaohang Zhang, Ilaria Squillante, Guillermo Monreal Santiago, Marcus Koch, Giuseppe Portale, Marleen Kamperman, Anastasiia Krushynska, Małgorzata Katarzyna Włodarczyk-Biegun\",\"doi\":\"10.1002/elsc.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Melt Electrowriting (MEW) is a powerful technique in tissue engineering, enabling the precise fabrication of scaffolds with complex geometries. One of the most important parameters of MEW is collector speed, which has been extensively studied in relation to critical translation speed. However, its influence on crystallinity was overlooked. Crystallinity is crucial for the mechanical properties and degradation behavior of the scaffolds. Therefore, in this study, we present how printing affects the crystallinity of fibers and the resulting mechanical properties of MEW scaffolds. In systematic analysis, we observed a significant reduction in scaffold crystallinity with increased speed, as evidenced by wide-angle X-ray scattering. This decrease in crystallinity was attributed to differences in cooling rates, impacting the polycaprolactone molecular orientation within the fibers. By using tensile testing, we observed the decrease in scaffold Young's modulus with increasing collector speed. Given the relation between crystallinity and mechanical properties of the material, we developed a finite element analysis model that accounts for changes in crystallinity by employing distinct bulk Young's modulus values to help characterize scaffold mechanical behavior under tensile loading. The model reveals insights into scaffold stiffness variation with different architectural designs. These insights offer valuable guidance for optimizing 3D printing to obtain scaffolds with desired mechanical properties.</p>\",\"PeriodicalId\":11678,\"journal\":{\"name\":\"Engineering in Life Sciences\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Life Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Designing Smartly: Understanding the Crystallinity of Melt Electrowritten Scaffolds
Melt Electrowriting (MEW) is a powerful technique in tissue engineering, enabling the precise fabrication of scaffolds with complex geometries. One of the most important parameters of MEW is collector speed, which has been extensively studied in relation to critical translation speed. However, its influence on crystallinity was overlooked. Crystallinity is crucial for the mechanical properties and degradation behavior of the scaffolds. Therefore, in this study, we present how printing affects the crystallinity of fibers and the resulting mechanical properties of MEW scaffolds. In systematic analysis, we observed a significant reduction in scaffold crystallinity with increased speed, as evidenced by wide-angle X-ray scattering. This decrease in crystallinity was attributed to differences in cooling rates, impacting the polycaprolactone molecular orientation within the fibers. By using tensile testing, we observed the decrease in scaffold Young's modulus with increasing collector speed. Given the relation between crystallinity and mechanical properties of the material, we developed a finite element analysis model that accounts for changes in crystallinity by employing distinct bulk Young's modulus values to help characterize scaffold mechanical behavior under tensile loading. The model reveals insights into scaffold stiffness variation with different architectural designs. These insights offer valuable guidance for optimizing 3D printing to obtain scaffolds with desired mechanical properties.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.