{"title":"通过电泳沉积在 AZ31 合金上制备钙改性 Bredigite/壳聚糖纳米复合涂层并确定其特性,以用于骨骼应用","authors":"P. Mofazali, H. Farnoush","doi":"10.1007/s10971-025-06695-8","DOIUrl":null,"url":null,"abstract":"<div><p>Biosilicate materials have garnered significant interest for their potential to enhance corrosion resistance, particularly in biomedical applications. In this study, the surface of AZ31 magnesium alloy was modified with Sr-doped bredigite/chitosan nanocomposite coatings to improve corrosion resistance for use in biodegradable implants. Bredigite calcium silicate (Ca<sub>7-x</sub>Sr<sub>x</sub>MgSi<sub>4</sub>O<sub>16</sub>), synthesized via a combustion sol–gel method with varying strontium doping levels (<i>x</i> = 0, 0.05, 0.1, 0.2, 0.4), was combined with chitosan and applied to magnesium substrates through electrophoretic deposition. Various techniques were employed to analyze and compare the chemical composition, verifying the incorporation of strontium into the bredigite structure. Electrochemical analysis demonstrated that the Sr-doped Bredigite/chitosan coatings significantly enhanced the corrosion resistance of the magnesium alloy in simulated body fluid. Polarization tests revealed that coatings containing 0.2 strontium substantially reduce the corrosion current density from 17.12 μA/cm² to ~1.37 μA/cm<sup>2</sup>. These coatings, exhibiting remarkable bioactivity and corrosion protection, hold strong potential as candidates for biodegradable magnesium-based implants in biomedical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"114 2","pages":"430 - 446"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and characterization of Sr-modified Bredigite/chitosan nanocomposite coatings on AZ31 alloy via electrophoretic deposition for bone applications\",\"authors\":\"P. Mofazali, H. Farnoush\",\"doi\":\"10.1007/s10971-025-06695-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biosilicate materials have garnered significant interest for their potential to enhance corrosion resistance, particularly in biomedical applications. In this study, the surface of AZ31 magnesium alloy was modified with Sr-doped bredigite/chitosan nanocomposite coatings to improve corrosion resistance for use in biodegradable implants. Bredigite calcium silicate (Ca<sub>7-x</sub>Sr<sub>x</sub>MgSi<sub>4</sub>O<sub>16</sub>), synthesized via a combustion sol–gel method with varying strontium doping levels (<i>x</i> = 0, 0.05, 0.1, 0.2, 0.4), was combined with chitosan and applied to magnesium substrates through electrophoretic deposition. Various techniques were employed to analyze and compare the chemical composition, verifying the incorporation of strontium into the bredigite structure. Electrochemical analysis demonstrated that the Sr-doped Bredigite/chitosan coatings significantly enhanced the corrosion resistance of the magnesium alloy in simulated body fluid. Polarization tests revealed that coatings containing 0.2 strontium substantially reduce the corrosion current density from 17.12 μA/cm² to ~1.37 μA/cm<sup>2</sup>. These coatings, exhibiting remarkable bioactivity and corrosion protection, hold strong potential as candidates for biodegradable magnesium-based implants in biomedical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"114 2\",\"pages\":\"430 - 446\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-025-06695-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-025-06695-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Fabrication and characterization of Sr-modified Bredigite/chitosan nanocomposite coatings on AZ31 alloy via electrophoretic deposition for bone applications
Biosilicate materials have garnered significant interest for their potential to enhance corrosion resistance, particularly in biomedical applications. In this study, the surface of AZ31 magnesium alloy was modified with Sr-doped bredigite/chitosan nanocomposite coatings to improve corrosion resistance for use in biodegradable implants. Bredigite calcium silicate (Ca7-xSrxMgSi4O16), synthesized via a combustion sol–gel method with varying strontium doping levels (x = 0, 0.05, 0.1, 0.2, 0.4), was combined with chitosan and applied to magnesium substrates through electrophoretic deposition. Various techniques were employed to analyze and compare the chemical composition, verifying the incorporation of strontium into the bredigite structure. Electrochemical analysis demonstrated that the Sr-doped Bredigite/chitosan coatings significantly enhanced the corrosion resistance of the magnesium alloy in simulated body fluid. Polarization tests revealed that coatings containing 0.2 strontium substantially reduce the corrosion current density from 17.12 μA/cm² to ~1.37 μA/cm2. These coatings, exhibiting remarkable bioactivity and corrosion protection, hold strong potential as candidates for biodegradable magnesium-based implants in biomedical applications.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.