Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang
{"title":"CeO2对650℃Ni-Co涂层H2O/ nacl腐蚀行为的影响","authors":"Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang","doi":"10.1007/s40195-025-01818-0","DOIUrl":null,"url":null,"abstract":"<div><p>The corrosion behavior of Ni-Co-CeO<sub>2</sub> composite coating was investigated under a simulated high-temperature marine atmosphere alongside Ni-Co coating. The corrosion kinetics, phase composition and microstructure evolution of the coatings were analyzed. A multi-layered oxide scale formed due to the synergistic corrosion by H<sub>2</sub>O and NaCl. The growth mechanism of the Co<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>2</sub>O<sub>3</sub>, CoFe<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub> and NiO in the scale was proposed according to the distribution of the CeO<sub>2</sub> particles. Compared to Ni-Co cating, the Ni-Co-CeO<sub>2</sub> coating exhibited superior corrosion resistance in the H<sub>2</sub>O/NaCl steam, which is beacause the CeO<sub>2</sub> exerted a blocking effect on retarding the diffusion of Fe atoms and corrosive medium, contributing to a reduced corrosion rate and an improved oxide adhesion compared to Ni-Co coating.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 4","pages":"672 - 690"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C\",\"authors\":\"Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang\",\"doi\":\"10.1007/s40195-025-01818-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The corrosion behavior of Ni-Co-CeO<sub>2</sub> composite coating was investigated under a simulated high-temperature marine atmosphere alongside Ni-Co coating. The corrosion kinetics, phase composition and microstructure evolution of the coatings were analyzed. A multi-layered oxide scale formed due to the synergistic corrosion by H<sub>2</sub>O and NaCl. The growth mechanism of the Co<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>2</sub>O<sub>3</sub>, CoFe<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub> and NiO in the scale was proposed according to the distribution of the CeO<sub>2</sub> particles. Compared to Ni-Co cating, the Ni-Co-CeO<sub>2</sub> coating exhibited superior corrosion resistance in the H<sub>2</sub>O/NaCl steam, which is beacause the CeO<sub>2</sub> exerted a blocking effect on retarding the diffusion of Fe atoms and corrosive medium, contributing to a reduced corrosion rate and an improved oxide adhesion compared to Ni-Co coating.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":\"38 4\",\"pages\":\"672 - 690\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-025-01818-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-025-01818-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C
The corrosion behavior of Ni-Co-CeO2 composite coating was investigated under a simulated high-temperature marine atmosphere alongside Ni-Co coating. The corrosion kinetics, phase composition and microstructure evolution of the coatings were analyzed. A multi-layered oxide scale formed due to the synergistic corrosion by H2O and NaCl. The growth mechanism of the Co3O4, Fe3O4, Fe2O3, CoFe2O4, NiFe2O4 and NiO in the scale was proposed according to the distribution of the CeO2 particles. Compared to Ni-Co cating, the Ni-Co-CeO2 coating exhibited superior corrosion resistance in the H2O/NaCl steam, which is beacause the CeO2 exerted a blocking effect on retarding the diffusion of Fe atoms and corrosive medium, contributing to a reduced corrosion rate and an improved oxide adhesion compared to Ni-Co coating.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.