Ahmed Hichem Yahi, Arslane Hatem Kacha, Macho Anani, Karim Salim
{"title":"优化al掺杂ZnO薄膜:太阳能电池的结构、光学和电学增强","authors":"Ahmed Hichem Yahi, Arslane Hatem Kacha, Macho Anani, Karim Salim","doi":"10.1134/S1063783425600451","DOIUrl":null,"url":null,"abstract":"<p>This study reports the synthesis and characterization of Al-doped ZnO (AZO) thin films deposited on glass substrates using the spray pyrolysis technique. The impact of Al doping concentrations (3, 5, and 7%) on the structural, optical, and electrical properties of ZnO thin films was systematically investigated. X-ray diffraction (XRD) analysis confirmed that all films exhibit a polycrystalline wurtzite structure with a preferred (002) orientation, and no secondary phases were detected, indicating the successful incorporation of Al into the ZnO matrix. UV-Vis spectroscopy revealed that Al doping enhances optical transparency, increasing transmittance from 70% (undoped ZnO) to 78% (AlZO-3.00) in the visible range (380–550 nm). The optical bandgap widened from 3.23 to 3.32 eV, attributed to the Burstein–Moss effect. Hall Effect measurements confirmed <i>n</i>-type conductivity, with carrier concentration increasing significantly, leading to improved electrical conductivity, which reached a maximum of 3.37 × 10<sup>–1</sup> Ω<sup>–1</sup> cm<sup>–1</sup> for the AlZO-3.00 film. However, at higher doping levels, carrier mobility saturation limited further conductivity improvements. These findings suggest that Al-doped ZnO thin films are promising low-cost, high-performance alternatives to conventional indium tin oxide (ITO) electrodes for applications in solar cells, optoelectronic devices, and transparent conductive coatings.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 4","pages":"259 - 268"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Al-Doped ZnO Thin Films: Structural, Optical, and Electrical Enhancements for Solar Cells\",\"authors\":\"Ahmed Hichem Yahi, Arslane Hatem Kacha, Macho Anani, Karim Salim\",\"doi\":\"10.1134/S1063783425600451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study reports the synthesis and characterization of Al-doped ZnO (AZO) thin films deposited on glass substrates using the spray pyrolysis technique. The impact of Al doping concentrations (3, 5, and 7%) on the structural, optical, and electrical properties of ZnO thin films was systematically investigated. X-ray diffraction (XRD) analysis confirmed that all films exhibit a polycrystalline wurtzite structure with a preferred (002) orientation, and no secondary phases were detected, indicating the successful incorporation of Al into the ZnO matrix. UV-Vis spectroscopy revealed that Al doping enhances optical transparency, increasing transmittance from 70% (undoped ZnO) to 78% (AlZO-3.00) in the visible range (380–550 nm). The optical bandgap widened from 3.23 to 3.32 eV, attributed to the Burstein–Moss effect. Hall Effect measurements confirmed <i>n</i>-type conductivity, with carrier concentration increasing significantly, leading to improved electrical conductivity, which reached a maximum of 3.37 × 10<sup>–1</sup> Ω<sup>–1</sup> cm<sup>–1</sup> for the AlZO-3.00 film. However, at higher doping levels, carrier mobility saturation limited further conductivity improvements. These findings suggest that Al-doped ZnO thin films are promising low-cost, high-performance alternatives to conventional indium tin oxide (ITO) electrodes for applications in solar cells, optoelectronic devices, and transparent conductive coatings.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"67 4\",\"pages\":\"259 - 268\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783425600451\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783425600451","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Optimizing Al-Doped ZnO Thin Films: Structural, Optical, and Electrical Enhancements for Solar Cells
This study reports the synthesis and characterization of Al-doped ZnO (AZO) thin films deposited on glass substrates using the spray pyrolysis technique. The impact of Al doping concentrations (3, 5, and 7%) on the structural, optical, and electrical properties of ZnO thin films was systematically investigated. X-ray diffraction (XRD) analysis confirmed that all films exhibit a polycrystalline wurtzite structure with a preferred (002) orientation, and no secondary phases were detected, indicating the successful incorporation of Al into the ZnO matrix. UV-Vis spectroscopy revealed that Al doping enhances optical transparency, increasing transmittance from 70% (undoped ZnO) to 78% (AlZO-3.00) in the visible range (380–550 nm). The optical bandgap widened from 3.23 to 3.32 eV, attributed to the Burstein–Moss effect. Hall Effect measurements confirmed n-type conductivity, with carrier concentration increasing significantly, leading to improved electrical conductivity, which reached a maximum of 3.37 × 10–1 Ω–1 cm–1 for the AlZO-3.00 film. However, at higher doping levels, carrier mobility saturation limited further conductivity improvements. These findings suggest that Al-doped ZnO thin films are promising low-cost, high-performance alternatives to conventional indium tin oxide (ITO) electrodes for applications in solar cells, optoelectronic devices, and transparent conductive coatings.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.