使用llm驱动的方法在钠离子电池层状阴极材料中进行先进的科学信息挖掘

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Youwan Na, Jeffrey J. Kim, Chanhyoung Park, Jaewon Hwang, Changgi Kim, Hokyung Lee and Jehoon Lee
{"title":"使用llm驱动的方法在钠离子电池层状阴极材料中进行先进的科学信息挖掘","authors":"Youwan Na, Jeffrey J. Kim, Chanhyoung Park, Jaewon Hwang, Changgi Kim, Hokyung Lee and Jehoon Lee","doi":"10.1039/D5MA00004A","DOIUrl":null,"url":null,"abstract":"<p >Materials informatics (MI) has emerged as a powerful paradigm for accelerating materials discovery and development through data-driven approaches. The scarcity of structured materials data, however, remains a critical bottleneck in minimizing the error between experimental and predicted values. Here, we present an advanced large language model (LLM) framework for building a comprehensive materials database of layered metal oxide (LMO) cathode materials in sodium-ion batteries (SIBs). By implementing optimized advanced retrieval-augmented generation techniques, including the tree of clarity (ToC) methodology, our system achieved an accuracy of 0.8861 and an <em>F</em>1-score of 0.9371 in extracting structured materials data from open-source publications. The framework successfully processed 312 publications, rapidly extracting 945 data points related to material composition, crystallinity, operating voltage, and electrode composition at approximately 20 seconds per paper. This automated approach to materials data acquisition demonstrated here is expected to significantly accelerate the development of comprehensive materials databases and enable rapid materials discovery through MI.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 8","pages":" 2543-2548"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00004a?page=search","citationCount":"0","resultStr":"{\"title\":\"Advanced scientific information mining using LLM-driven approaches in layered cathode materials for sodium-ion batteries†\",\"authors\":\"Youwan Na, Jeffrey J. Kim, Chanhyoung Park, Jaewon Hwang, Changgi Kim, Hokyung Lee and Jehoon Lee\",\"doi\":\"10.1039/D5MA00004A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Materials informatics (MI) has emerged as a powerful paradigm for accelerating materials discovery and development through data-driven approaches. The scarcity of structured materials data, however, remains a critical bottleneck in minimizing the error between experimental and predicted values. Here, we present an advanced large language model (LLM) framework for building a comprehensive materials database of layered metal oxide (LMO) cathode materials in sodium-ion batteries (SIBs). By implementing optimized advanced retrieval-augmented generation techniques, including the tree of clarity (ToC) methodology, our system achieved an accuracy of 0.8861 and an <em>F</em>1-score of 0.9371 in extracting structured materials data from open-source publications. The framework successfully processed 312 publications, rapidly extracting 945 data points related to material composition, crystallinity, operating voltage, and electrode composition at approximately 20 seconds per paper. This automated approach to materials data acquisition demonstrated here is expected to significantly accelerate the development of comprehensive materials databases and enable rapid materials discovery through MI.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 8\",\"pages\":\" 2543-2548\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00004a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00004a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00004a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

材料信息学(MI)已经成为通过数据驱动方法加速材料发现和开发的强大范例。然而,结构化材料数据的稀缺仍然是最小化实验值与预测值之间误差的关键瓶颈。本文提出了一种先进的大语言模型(LLM)框架,用于构建钠离子电池(sib)中层状金属氧化物(LMO)正极材料的综合材料数据库。通过优化先进的检索增强生成技术,包括清晰度树(ToC)方法,我们的系统在从开源出版物中提取结构化材料数据方面达到了0.8861的准确率和0.9371的f1得分。该框架成功处理了312篇论文,在每篇论文约20秒的时间内快速提取了945个数据点,涉及材料组成、结晶度、工作电压和电极组成。这里展示的这种材料数据采集的自动化方法有望显著加速综合材料数据库的开发,并通过MI实现快速的材料发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced scientific information mining using LLM-driven approaches in layered cathode materials for sodium-ion batteries†

Materials informatics (MI) has emerged as a powerful paradigm for accelerating materials discovery and development through data-driven approaches. The scarcity of structured materials data, however, remains a critical bottleneck in minimizing the error between experimental and predicted values. Here, we present an advanced large language model (LLM) framework for building a comprehensive materials database of layered metal oxide (LMO) cathode materials in sodium-ion batteries (SIBs). By implementing optimized advanced retrieval-augmented generation techniques, including the tree of clarity (ToC) methodology, our system achieved an accuracy of 0.8861 and an F1-score of 0.9371 in extracting structured materials data from open-source publications. The framework successfully processed 312 publications, rapidly extracting 945 data points related to material composition, crystallinity, operating voltage, and electrode composition at approximately 20 seconds per paper. This automated approach to materials data acquisition demonstrated here is expected to significantly accelerate the development of comprehensive materials databases and enable rapid materials discovery through MI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信