{"title":"用于光化学合成的大功率近平顶分布紫外330nm激光器","authors":"Qian Ti;Fei Yang;Huan Wang;Da-Fu Cui;Chuan Guo;Qi Bian;Chen Wang;Yong Bo;Qin-Jun Peng","doi":"10.1109/LPT.2025.3556005","DOIUrl":null,"url":null,"abstract":"We demonstrate a 10-watt level nanosecond pulse ultraviolet (UV) 330 nm laser from a two-stage cascaded second harmonic generation (SHG) of 1319 nm Nd:YAG laser. The diode-side-pumped Nd:YAG oscillator at 1319 nm is operated in the Q-switched macro/micro pulse regime, which is beneficial for increasing the average output power of the fundamental wave. In order to further scale the 330 nm output power, two LBO crystals rotated by 180° are employed to compensate for the spatial walk-off effect in the second-stage SHG configuration. Consequently, a record-high average output power of 11.9 W at 330 nm is achieved with total nonlinear conversion efficiency up to 33.1% from infrared to UV. Moreover, the UV circular beam with Gaussian spatial mode is homogenized and reshaped by two pairs of orthogonal cylindrical microlens arrays. Then, a near flat-top distributed square beam with adjustable spot size is realized, which helps to avoid absorption saturation and improve the reaction efficiency in photochemical synthesis.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 9","pages":"516-519"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Power Near Flat-Top Distributed Ultraviolet 330 nm Laser for Photochemical Synthesis\",\"authors\":\"Qian Ti;Fei Yang;Huan Wang;Da-Fu Cui;Chuan Guo;Qi Bian;Chen Wang;Yong Bo;Qin-Jun Peng\",\"doi\":\"10.1109/LPT.2025.3556005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a 10-watt level nanosecond pulse ultraviolet (UV) 330 nm laser from a two-stage cascaded second harmonic generation (SHG) of 1319 nm Nd:YAG laser. The diode-side-pumped Nd:YAG oscillator at 1319 nm is operated in the Q-switched macro/micro pulse regime, which is beneficial for increasing the average output power of the fundamental wave. In order to further scale the 330 nm output power, two LBO crystals rotated by 180° are employed to compensate for the spatial walk-off effect in the second-stage SHG configuration. Consequently, a record-high average output power of 11.9 W at 330 nm is achieved with total nonlinear conversion efficiency up to 33.1% from infrared to UV. Moreover, the UV circular beam with Gaussian spatial mode is homogenized and reshaped by two pairs of orthogonal cylindrical microlens arrays. Then, a near flat-top distributed square beam with adjustable spot size is realized, which helps to avoid absorption saturation and improve the reaction efficiency in photochemical synthesis.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"37 9\",\"pages\":\"516-519\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945884/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10945884/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High-Power Near Flat-Top Distributed Ultraviolet 330 nm Laser for Photochemical Synthesis
We demonstrate a 10-watt level nanosecond pulse ultraviolet (UV) 330 nm laser from a two-stage cascaded second harmonic generation (SHG) of 1319 nm Nd:YAG laser. The diode-side-pumped Nd:YAG oscillator at 1319 nm is operated in the Q-switched macro/micro pulse regime, which is beneficial for increasing the average output power of the fundamental wave. In order to further scale the 330 nm output power, two LBO crystals rotated by 180° are employed to compensate for the spatial walk-off effect in the second-stage SHG configuration. Consequently, a record-high average output power of 11.9 W at 330 nm is achieved with total nonlinear conversion efficiency up to 33.1% from infrared to UV. Moreover, the UV circular beam with Gaussian spatial mode is homogenized and reshaped by two pairs of orthogonal cylindrical microlens arrays. Then, a near flat-top distributed square beam with adjustable spot size is realized, which helps to avoid absorption saturation and improve the reaction efficiency in photochemical synthesis.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.