高性能过渡金属氮化物/碳纳米纤维复合材料作为可充电锌空气电池的正极

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
M. Posadzy , M. García-Rodríguez , J.X. Flores-Lasluisa , A. Moyseowicz , K. Kordek-Khalil , D. Cazorla-Amorós , E. Morallón
{"title":"高性能过渡金属氮化物/碳纳米纤维复合材料作为可充电锌空气电池的正极","authors":"M. Posadzy ,&nbsp;M. García-Rodríguez ,&nbsp;J.X. Flores-Lasluisa ,&nbsp;A. Moyseowicz ,&nbsp;K. Kordek-Khalil ,&nbsp;D. Cazorla-Amorós ,&nbsp;E. Morallón","doi":"10.1016/j.carbon.2025.120308","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable zinc-air batteries (ZABs) represent one of the most promising devices for future portable energy storage. However, bifunctional and cost-effective electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) need to be developed for practical real-world scenarios.</div><div>This work presents a comprehensive optimisation of the simple and green hydrothermal method to synthesise metal (Co/Fe) nitrides integrated with carbon nanofibers (CNF). The prepared nanocomposites exhibit remarkable electrocatalytic performance in OER and ORR. The combination of both metals in the CoFe–Fe<sub>3</sub>N/CNF material induces the highest bifunctional activity, attributed to a synergistic effect between the metals and the presence of a thin layer of cobalt oxide at the surface. The CNF content in the composite material is optimised, revealing the favourable CNF concentration of 60 wt%. The electrocatalysts with the highest bifunctional activity were evaluated as positive electrodes in ZABs, achieving superior cycling stability compared to a commercial Pt/C–RuO<sub>2</sub> electrocatalyst, and sustaining stability up to 60 h at a current density of 5 mA/cm<sup>2</sup>. These results underline the significant potential of cobalt-iron nitride/carbon nanofiber composites as highly efficient catalysts for oxygen electrochemical reactions and as promising components for improving the performance of rechargeable Zn-air batteries, thus contributing to the advancement of clean energy technologies.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"239 ","pages":"Article 120308"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance transition metal nitride/carbon nanofiber composites as positive electrode in rechargeable Zn-air batteries\",\"authors\":\"M. Posadzy ,&nbsp;M. García-Rodríguez ,&nbsp;J.X. Flores-Lasluisa ,&nbsp;A. Moyseowicz ,&nbsp;K. Kordek-Khalil ,&nbsp;D. Cazorla-Amorós ,&nbsp;E. Morallón\",\"doi\":\"10.1016/j.carbon.2025.120308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rechargeable zinc-air batteries (ZABs) represent one of the most promising devices for future portable energy storage. However, bifunctional and cost-effective electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) need to be developed for practical real-world scenarios.</div><div>This work presents a comprehensive optimisation of the simple and green hydrothermal method to synthesise metal (Co/Fe) nitrides integrated with carbon nanofibers (CNF). The prepared nanocomposites exhibit remarkable electrocatalytic performance in OER and ORR. The combination of both metals in the CoFe–Fe<sub>3</sub>N/CNF material induces the highest bifunctional activity, attributed to a synergistic effect between the metals and the presence of a thin layer of cobalt oxide at the surface. The CNF content in the composite material is optimised, revealing the favourable CNF concentration of 60 wt%. The electrocatalysts with the highest bifunctional activity were evaluated as positive electrodes in ZABs, achieving superior cycling stability compared to a commercial Pt/C–RuO<sub>2</sub> electrocatalyst, and sustaining stability up to 60 h at a current density of 5 mA/cm<sup>2</sup>. These results underline the significant potential of cobalt-iron nitride/carbon nanofiber composites as highly efficient catalysts for oxygen electrochemical reactions and as promising components for improving the performance of rechargeable Zn-air batteries, thus contributing to the advancement of clean energy technologies.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"239 \",\"pages\":\"Article 120308\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325003240\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325003240","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电锌空气电池(ZABs)是未来便携式能源存储最有前途的设备之一。然而,需要开发用于析氧反应(OER)和氧还原反应(ORR)的双功能和经济高效的电催化剂。本文提出了一种简单、绿色的水热合成碳纳米纤维(CNF)金属(Co/Fe)氮化物的方法。制备的纳米复合材料在OER和ORR中表现出优异的电催化性能。两种金属在fe - fe3n /CNF材料中的结合诱导了最高的双功能活性,这归因于金属之间的协同效应和表面薄层氧化钴的存在。优化复合材料中的CNF含量,揭示了有利的CNF浓度为60 wt%。具有最高双功能活性的电催化剂被评价为ZABs的正极,与商用Pt/ C-RuO2电催化剂相比,具有更好的循环稳定性,并且在5 mA/cm2的电流密度下保持长达60小时的稳定性。这些结果强调了钴-氮化铁/碳纳米纤维复合材料作为氧电化学反应的高效催化剂和提高可充电锌空气电池性能的有希望的组件的巨大潜力,从而有助于清洁能源技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-performance transition metal nitride/carbon nanofiber composites as positive electrode in rechargeable Zn-air batteries

High-performance transition metal nitride/carbon nanofiber composites as positive electrode in rechargeable Zn-air batteries
Rechargeable zinc-air batteries (ZABs) represent one of the most promising devices for future portable energy storage. However, bifunctional and cost-effective electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) need to be developed for practical real-world scenarios.
This work presents a comprehensive optimisation of the simple and green hydrothermal method to synthesise metal (Co/Fe) nitrides integrated with carbon nanofibers (CNF). The prepared nanocomposites exhibit remarkable electrocatalytic performance in OER and ORR. The combination of both metals in the CoFe–Fe3N/CNF material induces the highest bifunctional activity, attributed to a synergistic effect between the metals and the presence of a thin layer of cobalt oxide at the surface. The CNF content in the composite material is optimised, revealing the favourable CNF concentration of 60 wt%. The electrocatalysts with the highest bifunctional activity were evaluated as positive electrodes in ZABs, achieving superior cycling stability compared to a commercial Pt/C–RuO2 electrocatalyst, and sustaining stability up to 60 h at a current density of 5 mA/cm2. These results underline the significant potential of cobalt-iron nitride/carbon nanofiber composites as highly efficient catalysts for oxygen electrochemical reactions and as promising components for improving the performance of rechargeable Zn-air batteries, thus contributing to the advancement of clean energy technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信