Yilin Yang , Jiangbo Guo , Haifei Cao , Xin Tian , Hao Shen , Junjie Niu , Huilin Yang , Qin Shi , Yong Xu
{"title":"种子和土壤激发的水凝胶微球:一种双作用抗氧化剂和逆转椎间盘退变的细胞疗法","authors":"Yilin Yang , Jiangbo Guo , Haifei Cao , Xin Tian , Hao Shen , Junjie Niu , Huilin Yang , Qin Shi , Yong Xu","doi":"10.1016/j.biomaterials.2025.123326","DOIUrl":null,"url":null,"abstract":"<div><div>Intervertebral disc degeneration (IVDD) is a globally prevalent disease, yet achieving dual repair of tissue and function presents significant challenges. Considering reactive oxygen species (ROS) is a primary cause of IVDD, and given the decrease of nucleus pulposus cells (NPCs) and extensive degradation of extracellular matrix (ECM) during IVDD development, the present study, inspired by the “seeds-and-soil” strategy, has developed NPCs-loaded TBA@Gel&Chs hydrogel microspheres. These microspheres serve as exogenous supplements of NPCs and ECM analogs, replenishing “seeds” and “soil” for nucleus pulposus repair, and incorporating polyphenol antioxidant components to interrupt the oxidative stress-IVDD cycle, thereby constructing a microsphere system where NPCs and ECM support each other. Experiments proved that TBA@Gel&Chs exhibited significant extracellular ROS-scavenging antioxidant capabilities while effectively upregulating intracellular antioxidant proteins expression (Sirt3 and Sod2). This dual-action antioxidant capability effectively protects the vitality and physiological functions of NPCs. The therapeutic effects of microspheres on IVDD were also confirmed in rat models, which was found significantly restore histological structure and mechanical properties of degenerated discs. Additionally, RNA-seq results have provided evidences of antioxidant mechanism by which TBA@Gel&Chs protected NPCs from oxidative stress. Therefore, the NPCs-loaded TBA@Gel&Chs microspheres developed in this study have achieved excellent therapeutic effects, offering a paradigm using antioxidant biomaterials combined with cellular therapy for IVDD treatment.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123326"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeds-and-soil inspired hydrogel microspheres: A dual-action antioxidant and cellular therapy for reversing intervertebral disc degeneration\",\"authors\":\"Yilin Yang , Jiangbo Guo , Haifei Cao , Xin Tian , Hao Shen , Junjie Niu , Huilin Yang , Qin Shi , Yong Xu\",\"doi\":\"10.1016/j.biomaterials.2025.123326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intervertebral disc degeneration (IVDD) is a globally prevalent disease, yet achieving dual repair of tissue and function presents significant challenges. Considering reactive oxygen species (ROS) is a primary cause of IVDD, and given the decrease of nucleus pulposus cells (NPCs) and extensive degradation of extracellular matrix (ECM) during IVDD development, the present study, inspired by the “seeds-and-soil” strategy, has developed NPCs-loaded TBA@Gel&Chs hydrogel microspheres. These microspheres serve as exogenous supplements of NPCs and ECM analogs, replenishing “seeds” and “soil” for nucleus pulposus repair, and incorporating polyphenol antioxidant components to interrupt the oxidative stress-IVDD cycle, thereby constructing a microsphere system where NPCs and ECM support each other. Experiments proved that TBA@Gel&Chs exhibited significant extracellular ROS-scavenging antioxidant capabilities while effectively upregulating intracellular antioxidant proteins expression (Sirt3 and Sod2). This dual-action antioxidant capability effectively protects the vitality and physiological functions of NPCs. The therapeutic effects of microspheres on IVDD were also confirmed in rat models, which was found significantly restore histological structure and mechanical properties of degenerated discs. Additionally, RNA-seq results have provided evidences of antioxidant mechanism by which TBA@Gel&Chs protected NPCs from oxidative stress. Therefore, the NPCs-loaded TBA@Gel&Chs microspheres developed in this study have achieved excellent therapeutic effects, offering a paradigm using antioxidant biomaterials combined with cellular therapy for IVDD treatment.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"321 \",\"pages\":\"Article 123326\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961225002455\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002455","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Seeds-and-soil inspired hydrogel microspheres: A dual-action antioxidant and cellular therapy for reversing intervertebral disc degeneration
Intervertebral disc degeneration (IVDD) is a globally prevalent disease, yet achieving dual repair of tissue and function presents significant challenges. Considering reactive oxygen species (ROS) is a primary cause of IVDD, and given the decrease of nucleus pulposus cells (NPCs) and extensive degradation of extracellular matrix (ECM) during IVDD development, the present study, inspired by the “seeds-and-soil” strategy, has developed NPCs-loaded TBA@Gel&Chs hydrogel microspheres. These microspheres serve as exogenous supplements of NPCs and ECM analogs, replenishing “seeds” and “soil” for nucleus pulposus repair, and incorporating polyphenol antioxidant components to interrupt the oxidative stress-IVDD cycle, thereby constructing a microsphere system where NPCs and ECM support each other. Experiments proved that TBA@Gel&Chs exhibited significant extracellular ROS-scavenging antioxidant capabilities while effectively upregulating intracellular antioxidant proteins expression (Sirt3 and Sod2). This dual-action antioxidant capability effectively protects the vitality and physiological functions of NPCs. The therapeutic effects of microspheres on IVDD were also confirmed in rat models, which was found significantly restore histological structure and mechanical properties of degenerated discs. Additionally, RNA-seq results have provided evidences of antioxidant mechanism by which TBA@Gel&Chs protected NPCs from oxidative stress. Therefore, the NPCs-loaded TBA@Gel&Chs microspheres developed in this study have achieved excellent therapeutic effects, offering a paradigm using antioxidant biomaterials combined with cellular therapy for IVDD treatment.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.