Asif Mahmood , Chuanwen Sun , Wei Li , Muhammad Imran Lashari , Rui Sun , Cheng Li , Zifan Hu
{"title":"激光粉末床熔合IN718高温合金的力学响应和疲劳性能研究:晶体塑性建模和基于缺陷的寿命预测","authors":"Asif Mahmood , Chuanwen Sun , Wei Li , Muhammad Imran Lashari , Rui Sun , Cheng Li , Zifan Hu","doi":"10.1016/j.engfailanal.2025.109601","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical response and fatigue properties of laser powdered-bed fusion IN718 superalloy were explored experimentally and numerically. Firstly, uniaxial fatigue testing was conducted to investigate failure mechanisms under two stress ratios in the high-cycle and very high-cycle regimes, for the as-built and solution aging conditions. The fracture surfaces reveal the competing crack nucleation behaviors driven by manufacturing or crystallographic defects. Furthermore, solution aging significantly improves fatigue life compared to as-built conditions, demonstrating higher fatigue lives under similar stress levels. Secondly, crystal plasticity finite element (CPFE) modeling was employed to develop a statistically representative volume element, enabling evaluation of the local stress and strain distributions with and without pores under cyclic loading. In addition, model parameters were calibrated using experimental stress–strain data, emphasizing the precision and validity of the proposed model. The computational results show that softened grains oriented 45° to the loading direction exhibit greater deformation. Moreover, the accumulated plastic strain increases as the loading cycles progress. Finally, a fatigue life prediction model was developed, considering the sensitivity of crack nucleation to manufacturing and crystallographic defects, along with CPFE results, showing good consistency between experimental and predicted fatigue lives across different stress levels in high-cycle and very high-cycle regimes.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"175 ","pages":"Article 109601"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring mechanical response and fatigue properties of laser powdered-bed fusion IN718 superalloy: Crystal plasticity modeling and defect-based life prediction\",\"authors\":\"Asif Mahmood , Chuanwen Sun , Wei Li , Muhammad Imran Lashari , Rui Sun , Cheng Li , Zifan Hu\",\"doi\":\"10.1016/j.engfailanal.2025.109601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical response and fatigue properties of laser powdered-bed fusion IN718 superalloy were explored experimentally and numerically. Firstly, uniaxial fatigue testing was conducted to investigate failure mechanisms under two stress ratios in the high-cycle and very high-cycle regimes, for the as-built and solution aging conditions. The fracture surfaces reveal the competing crack nucleation behaviors driven by manufacturing or crystallographic defects. Furthermore, solution aging significantly improves fatigue life compared to as-built conditions, demonstrating higher fatigue lives under similar stress levels. Secondly, crystal plasticity finite element (CPFE) modeling was employed to develop a statistically representative volume element, enabling evaluation of the local stress and strain distributions with and without pores under cyclic loading. In addition, model parameters were calibrated using experimental stress–strain data, emphasizing the precision and validity of the proposed model. The computational results show that softened grains oriented 45° to the loading direction exhibit greater deformation. Moreover, the accumulated plastic strain increases as the loading cycles progress. Finally, a fatigue life prediction model was developed, considering the sensitivity of crack nucleation to manufacturing and crystallographic defects, along with CPFE results, showing good consistency between experimental and predicted fatigue lives across different stress levels in high-cycle and very high-cycle regimes.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":\"175 \",\"pages\":\"Article 109601\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630725003425\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725003425","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Exploring mechanical response and fatigue properties of laser powdered-bed fusion IN718 superalloy: Crystal plasticity modeling and defect-based life prediction
The mechanical response and fatigue properties of laser powdered-bed fusion IN718 superalloy were explored experimentally and numerically. Firstly, uniaxial fatigue testing was conducted to investigate failure mechanisms under two stress ratios in the high-cycle and very high-cycle regimes, for the as-built and solution aging conditions. The fracture surfaces reveal the competing crack nucleation behaviors driven by manufacturing or crystallographic defects. Furthermore, solution aging significantly improves fatigue life compared to as-built conditions, demonstrating higher fatigue lives under similar stress levels. Secondly, crystal plasticity finite element (CPFE) modeling was employed to develop a statistically representative volume element, enabling evaluation of the local stress and strain distributions with and without pores under cyclic loading. In addition, model parameters were calibrated using experimental stress–strain data, emphasizing the precision and validity of the proposed model. The computational results show that softened grains oriented 45° to the loading direction exhibit greater deformation. Moreover, the accumulated plastic strain increases as the loading cycles progress. Finally, a fatigue life prediction model was developed, considering the sensitivity of crack nucleation to manufacturing and crystallographic defects, along with CPFE results, showing good consistency between experimental and predicted fatigue lives across different stress levels in high-cycle and very high-cycle regimes.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.