Junjie Yang , Zhe Hu , Junjing Li , Xiaolin Guo , Xiaowei Gao , Jiaxuan Liu , Yaling Wang , Zhiheng Qu , Wanchun Li , Zhongqi Li , Wanjing Li , Yien Huang , Jiali Chen , Hao Wen , Binke Yuan
{"title":"一个对自然刺激进行动态网络分析的工具箱","authors":"Junjie Yang , Zhe Hu , Junjing Li , Xiaolin Guo , Xiaowei Gao , Jiaxuan Liu , Yaling Wang , Zhiheng Qu , Wanchun Li , Zhongqi Li , Wanjing Li , Yien Huang , Jiali Chen , Hao Wen , Binke Yuan","doi":"10.1016/j.neuroimage.2025.121203","DOIUrl":null,"url":null,"abstract":"<div><div>Experiments with naturalistic stimuli (e.g., listening to stories or watching movies) are emerging paradigms in brain function research. The content of naturalistic stimuli is rich and continuous. The fMRI signals of naturalistic stimuli are complex and include different components. A major challenge is isolate the stimuli-induced signals while simultaneously tracking the brain's responses to these stimuli in real-time. To this end, we have developed a user-friendly graphical interface toolbox called NaDyNet (Naturalistic Dynamic Network Toolbox), which integrates existing dynamic brain network analysis methods and their improved versions. The main features of NaDyNet are: 1) extracting signals of interest from naturalistic fMRI signals; 2) incorporating six commonly used dynamic analysis methods and three static analysis methods; 3) improved versions of these dynamic methods by adopting inter-subject analysis to eliminate the effects of non-interest signals; 4) performing K-means clustering analysis to identify temporally reoccurring states along with their temporal and spatial attributes; 5) Visualization of spatiotemporal results. We then introduced the rationale for incorporating inter-subject analysis to improve existing dynamic brain network analysis methods and presented examples by analyzing naturalistic fMRI data. We hope that this toolbox will promote the development of naturalistic neuroscience. The toolbox is available at <span><span>https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"311 ","pages":"Article 121203"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NaDyNet: A toolbox for dynamic network analysis of naturalistic stimuli\",\"authors\":\"Junjie Yang , Zhe Hu , Junjing Li , Xiaolin Guo , Xiaowei Gao , Jiaxuan Liu , Yaling Wang , Zhiheng Qu , Wanchun Li , Zhongqi Li , Wanjing Li , Yien Huang , Jiali Chen , Hao Wen , Binke Yuan\",\"doi\":\"10.1016/j.neuroimage.2025.121203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Experiments with naturalistic stimuli (e.g., listening to stories or watching movies) are emerging paradigms in brain function research. The content of naturalistic stimuli is rich and continuous. The fMRI signals of naturalistic stimuli are complex and include different components. A major challenge is isolate the stimuli-induced signals while simultaneously tracking the brain's responses to these stimuli in real-time. To this end, we have developed a user-friendly graphical interface toolbox called NaDyNet (Naturalistic Dynamic Network Toolbox), which integrates existing dynamic brain network analysis methods and their improved versions. The main features of NaDyNet are: 1) extracting signals of interest from naturalistic fMRI signals; 2) incorporating six commonly used dynamic analysis methods and three static analysis methods; 3) improved versions of these dynamic methods by adopting inter-subject analysis to eliminate the effects of non-interest signals; 4) performing K-means clustering analysis to identify temporally reoccurring states along with their temporal and spatial attributes; 5) Visualization of spatiotemporal results. We then introduced the rationale for incorporating inter-subject analysis to improve existing dynamic brain network analysis methods and presented examples by analyzing naturalistic fMRI data. We hope that this toolbox will promote the development of naturalistic neuroscience. The toolbox is available at <span><span>https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"311 \",\"pages\":\"Article 121203\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S105381192500206X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105381192500206X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
NaDyNet: A toolbox for dynamic network analysis of naturalistic stimuli
Experiments with naturalistic stimuli (e.g., listening to stories or watching movies) are emerging paradigms in brain function research. The content of naturalistic stimuli is rich and continuous. The fMRI signals of naturalistic stimuli are complex and include different components. A major challenge is isolate the stimuli-induced signals while simultaneously tracking the brain's responses to these stimuli in real-time. To this end, we have developed a user-friendly graphical interface toolbox called NaDyNet (Naturalistic Dynamic Network Toolbox), which integrates existing dynamic brain network analysis methods and their improved versions. The main features of NaDyNet are: 1) extracting signals of interest from naturalistic fMRI signals; 2) incorporating six commonly used dynamic analysis methods and three static analysis methods; 3) improved versions of these dynamic methods by adopting inter-subject analysis to eliminate the effects of non-interest signals; 4) performing K-means clustering analysis to identify temporally reoccurring states along with their temporal and spatial attributes; 5) Visualization of spatiotemporal results. We then introduced the rationale for incorporating inter-subject analysis to improve existing dynamic brain network analysis methods and presented examples by analyzing naturalistic fMRI data. We hope that this toolbox will promote the development of naturalistic neuroscience. The toolbox is available at https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.