新型离散统计模型在医疗和健康真实数据中的应用

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Muteb Faraj Alharthi , Samirah Alzubaidi
{"title":"新型离散统计模型在医疗和健康真实数据中的应用","authors":"Muteb Faraj Alharthi ,&nbsp;Samirah Alzubaidi","doi":"10.1016/j.aej.2025.04.026","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces and examines a novel two-parameter count probability distribution. The new distribution is developed by combining Poisson and two-parameter Chris-Jerry distributions and is named as “Poisson two-parameter Chris-Jerry” distribution. Key mathematical characteristics of this model are analyzed, including moments, moment-generating functions, variance, dispersion index, skewness, and kurtosis. Additionally, reliability features such as the hazard rate, and Shannon entropy are explored. The parameter estimation is performed using a renowned maximum likelihood estimation approach. A comprehensive simulation study is utilized to evaluate the performance of derived estimators. The model's flexibility is tested on four datasets from different domains, revealing that it offers greater flexibility compared to existing distributions.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"125 ","pages":"Pages 42-54"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel discrete statistical model with applications on medical and health real data\",\"authors\":\"Muteb Faraj Alharthi ,&nbsp;Samirah Alzubaidi\",\"doi\":\"10.1016/j.aej.2025.04.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces and examines a novel two-parameter count probability distribution. The new distribution is developed by combining Poisson and two-parameter Chris-Jerry distributions and is named as “Poisson two-parameter Chris-Jerry” distribution. Key mathematical characteristics of this model are analyzed, including moments, moment-generating functions, variance, dispersion index, skewness, and kurtosis. Additionally, reliability features such as the hazard rate, and Shannon entropy are explored. The parameter estimation is performed using a renowned maximum likelihood estimation approach. A comprehensive simulation study is utilized to evaluate the performance of derived estimators. The model's flexibility is tested on four datasets from different domains, revealing that it offers greater flexibility compared to existing distributions.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"125 \",\"pages\":\"Pages 42-54\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005101\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005101","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并检验了一种新的双参数计数概率分布。将泊松分布与双参数克里斯-杰里分布相结合,得到了新的分布,并命名为“泊松双参数克里斯-杰里”分布。分析了该模型的主要数学特性,包括矩、矩生成函数、方差、色散指数、偏度和峰度。此外,还探讨了风险率和香农熵等可靠性特征。参数估计使用著名的最大似然估计方法进行。利用全面的仿真研究来评估衍生估计器的性能。该模型的灵活性在来自不同领域的四个数据集上进行了测试,表明与现有分布相比,它提供了更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel discrete statistical model with applications on medical and health real data
This study introduces and examines a novel two-parameter count probability distribution. The new distribution is developed by combining Poisson and two-parameter Chris-Jerry distributions and is named as “Poisson two-parameter Chris-Jerry” distribution. Key mathematical characteristics of this model are analyzed, including moments, moment-generating functions, variance, dispersion index, skewness, and kurtosis. Additionally, reliability features such as the hazard rate, and Shannon entropy are explored. The parameter estimation is performed using a renowned maximum likelihood estimation approach. A comprehensive simulation study is utilized to evaluate the performance of derived estimators. The model's flexibility is tested on four datasets from different domains, revealing that it offers greater flexibility compared to existing distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信