具有二阶切割顶点的图的多项式重构问题

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Alexander Farrugia
{"title":"具有二阶切割顶点的图的多项式重构问题","authors":"Alexander Farrugia","doi":"10.1016/j.dam.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>In the polynomial reconstruction problem (PRP), the characteristic polynomial <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is sought from the polynomial deck <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> containing the characteristic polynomials of the <span><math><mi>n</mi></math></span> vertex-deleted subgraphs of <span><math><mi>G</mi></math></span>. The diagonal entries of the adjugate matrix <span><math><mrow><mo>adj</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> are the elements of <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The PRP is not completely solved for graphs having vertices of degree one. In this paper, we use <span><math><mrow><mo>adj</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to successfully obtain <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> from <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for certain graphs having a vertex of degree one whose characteristic polynomial is not discoverable using results from current literature. Our methods require such graphs to have a vertex of degree one adjacent to a vertex of degree two, and this latter vertex would then be a cut-vertex of <span><math><mi>G</mi></math></span>. We thus extend this idea to partially solve the PRP for more general graphs that have a cut-vertex of degree two which is not necessarily adjacent to vertices of degree one, presenting an algorithm that provides <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> from <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> has such a cut-vertex.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 165-175"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The polynomial reconstruction problem for graphs having cut-vertices of degree two\",\"authors\":\"Alexander Farrugia\",\"doi\":\"10.1016/j.dam.2025.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the polynomial reconstruction problem (PRP), the characteristic polynomial <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is sought from the polynomial deck <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> containing the characteristic polynomials of the <span><math><mi>n</mi></math></span> vertex-deleted subgraphs of <span><math><mi>G</mi></math></span>. The diagonal entries of the adjugate matrix <span><math><mrow><mo>adj</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> are the elements of <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The PRP is not completely solved for graphs having vertices of degree one. In this paper, we use <span><math><mrow><mo>adj</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to successfully obtain <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> from <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for certain graphs having a vertex of degree one whose characteristic polynomial is not discoverable using results from current literature. Our methods require such graphs to have a vertex of degree one adjacent to a vertex of degree two, and this latter vertex would then be a cut-vertex of <span><math><mi>G</mi></math></span>. We thus extend this idea to partially solve the PRP for more general graphs that have a cut-vertex of degree two which is not necessarily adjacent to vertices of degree one, presenting an algorithm that provides <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> from <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> has such a cut-vertex.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 165-175\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001726\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001726","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在多项式重构问题(PRP)中,从包含G的n个去顶点子图的特征多项式的多项式甲板PD(G)中寻找图G的特征多项式φ (G,x), G的共轭矩阵adj(G,x)的对角线项是PD(G)的元素。对于顶点次数为1的图,PRP不能完全解决。在本文中,我们使用adj(G,x)成功地从PD(G)中获得了具有1次顶点的某些图的φ (G,x),这些图的特征多项式是不可发现的。我们的方法要求这样的图有一个度的顶点与一个度的顶点相邻,然后这个后一个顶点将是G的切割顶点。因此,我们将这个想法扩展到部分解决更一般的图的PRP,这些图的切割顶点为2度,不一定与1度的顶点相邻,提出了一种算法,当G有这样的切割顶点时,从PD(G)提供ϕ(G,x)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The polynomial reconstruction problem for graphs having cut-vertices of degree two
In the polynomial reconstruction problem (PRP), the characteristic polynomial ϕ(G,x) of a graph G is sought from the polynomial deck PD(G) containing the characteristic polynomials of the n vertex-deleted subgraphs of G. The diagonal entries of the adjugate matrix adj(G,x) of G are the elements of PD(G). The PRP is not completely solved for graphs having vertices of degree one. In this paper, we use adj(G,x) to successfully obtain ϕ(G,x) from PD(G) for certain graphs having a vertex of degree one whose characteristic polynomial is not discoverable using results from current literature. Our methods require such graphs to have a vertex of degree one adjacent to a vertex of degree two, and this latter vertex would then be a cut-vertex of G. We thus extend this idea to partially solve the PRP for more general graphs that have a cut-vertex of degree two which is not necessarily adjacent to vertices of degree one, presenting an algorithm that provides ϕ(G,x) from PD(G) when G has such a cut-vertex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信