密集图的半固有取向

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Júlio Araújo , Frédéric Havet , Claudia Linhares Sales , Nicolas Nisse , Karol Suchan
{"title":"密集图的半固有取向","authors":"Júlio Araújo ,&nbsp;Frédéric Havet ,&nbsp;Claudia Linhares Sales ,&nbsp;Nicolas Nisse ,&nbsp;Karol Suchan","doi":"10.1016/j.dam.2025.04.020","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>orientation</em> <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a digraph obtained from <span><math><mi>G</mi></math></span> by replacing each edge by exactly one of the two possible arcs with the same ends. An orientation <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span><em>-orientation</em> if the in-degree of each vertex in <span><math><mi>D</mi></math></span> is at most <span><math><mi>k</mi></math></span>. An orientation <span><math><mi>D</mi></math></span> of <span><math><mi>G</mi></math></span> is <em>proper</em> if any two adjacent vertices have different in-degrees in <span><math><mi>D</mi></math></span>. The <em>proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a proper <span><math><mi>k</mi></math></span>-orientation.</div><div>A <em>weighted orientation</em> of a graph <span><math><mi>G</mi></math></span> is a pair <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>D</mi></math></span> is an orientation of <span><math><mi>G</mi></math></span> and <span><math><mi>w</mi></math></span> is an arc-weighting <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>→</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. A <em>semi-proper orientation</em> of <span><math><mi>G</mi></math></span> is a weighted orientation <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of <span><math><mi>G</mi></math></span> such that for every two adjacent vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> in <span><math><mi>G</mi></math></span>, we have that <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the sum of the weights of the arcs in <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> with head <span><math><mi>v</mi></math></span>. For a positive integer <span><math><mi>k</mi></math></span>, a <em>semi-proper</em> <span><math><mi>k</mi></math></span><em>-orientation</em> <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a semi-proper orientation of <span><math><mi>G</mi></math></span> such that <span><math><mrow><msub><mrow><mo>max</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span>. The <em>semi-proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the least <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a semi-proper <span><math><mi>k</mi></math></span>-orientation.</div><div>In this work, we first prove that <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> for every split graph <span><math><mi>G</mi></math></span>, and that, given a split graph <span><math><mi>G</mi></math></span>, deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> is an <span><math><mi>NP</mi></math></span>-complete problem. We also show that, for every <span><math><mi>k</mi></math></span>, there exist a (chordal) graph <span><math><mi>G</mi></math></span> and a split subgraph <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> and <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></math></span>. In the sequel, we show that, for every <span><math><mrow><mi>n</mi><mo>≥</mo><mi>p</mi><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>p</mi></mrow></mfenced></mrow></math></span>, where <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> is the <span><math><mi>p</mi></math></span>th power of the path on <span><math><mi>n</mi></math></span> vertices. We investigate further unit interval graphs with no big clique: we show that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for any unit interval graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>, and present a complete characterization of unit interval graphs with <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>. Then, we show that deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> can be solved in polynomial time in the class of cobipartite graphs. Finally, we prove that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><mi>FPT</mi></math></span> when parameterized by the minimum size of a vertex cover in <span><math><mi>G</mi></math></span> or by the treewidth of <span><math><mi>G</mi></math></span>. We also prove that not only computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, but also <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, admits a polynomial kernel when parameterized by the neighborhood diversity plus the value of the solution. These results imply kernels of size <span><math><msup><mrow><mn>4</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, in chordal graphs and split graphs, respectively, for the problem of deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> parameterized by <span><math><mi>k</mi></math></span>. We also present exponential kernels for computing both <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a cograph. On the other hand, we show that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> does not admit a polynomial kernel parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a chordal graph, unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP</mi><mo>/</mo><mi>poly</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 196-217"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-proper orientations of dense graphs\",\"authors\":\"Júlio Araújo ,&nbsp;Frédéric Havet ,&nbsp;Claudia Linhares Sales ,&nbsp;Nicolas Nisse ,&nbsp;Karol Suchan\",\"doi\":\"10.1016/j.dam.2025.04.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <em>orientation</em> <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a digraph obtained from <span><math><mi>G</mi></math></span> by replacing each edge by exactly one of the two possible arcs with the same ends. An orientation <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span><em>-orientation</em> if the in-degree of each vertex in <span><math><mi>D</mi></math></span> is at most <span><math><mi>k</mi></math></span>. An orientation <span><math><mi>D</mi></math></span> of <span><math><mi>G</mi></math></span> is <em>proper</em> if any two adjacent vertices have different in-degrees in <span><math><mi>D</mi></math></span>. The <em>proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a proper <span><math><mi>k</mi></math></span>-orientation.</div><div>A <em>weighted orientation</em> of a graph <span><math><mi>G</mi></math></span> is a pair <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>D</mi></math></span> is an orientation of <span><math><mi>G</mi></math></span> and <span><math><mi>w</mi></math></span> is an arc-weighting <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>→</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. A <em>semi-proper orientation</em> of <span><math><mi>G</mi></math></span> is a weighted orientation <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of <span><math><mi>G</mi></math></span> such that for every two adjacent vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> in <span><math><mi>G</mi></math></span>, we have that <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the sum of the weights of the arcs in <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> with head <span><math><mi>v</mi></math></span>. For a positive integer <span><math><mi>k</mi></math></span>, a <em>semi-proper</em> <span><math><mi>k</mi></math></span><em>-orientation</em> <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a semi-proper orientation of <span><math><mi>G</mi></math></span> such that <span><math><mrow><msub><mrow><mo>max</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span>. The <em>semi-proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the least <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a semi-proper <span><math><mi>k</mi></math></span>-orientation.</div><div>In this work, we first prove that <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> for every split graph <span><math><mi>G</mi></math></span>, and that, given a split graph <span><math><mi>G</mi></math></span>, deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> is an <span><math><mi>NP</mi></math></span>-complete problem. We also show that, for every <span><math><mi>k</mi></math></span>, there exist a (chordal) graph <span><math><mi>G</mi></math></span> and a split subgraph <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> and <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></math></span>. In the sequel, we show that, for every <span><math><mrow><mi>n</mi><mo>≥</mo><mi>p</mi><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>p</mi></mrow></mfenced></mrow></math></span>, where <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> is the <span><math><mi>p</mi></math></span>th power of the path on <span><math><mi>n</mi></math></span> vertices. We investigate further unit interval graphs with no big clique: we show that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for any unit interval graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>, and present a complete characterization of unit interval graphs with <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>. Then, we show that deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> can be solved in polynomial time in the class of cobipartite graphs. Finally, we prove that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><mi>FPT</mi></math></span> when parameterized by the minimum size of a vertex cover in <span><math><mi>G</mi></math></span> or by the treewidth of <span><math><mi>G</mi></math></span>. We also prove that not only computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, but also <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, admits a polynomial kernel when parameterized by the neighborhood diversity plus the value of the solution. These results imply kernels of size <span><math><msup><mrow><mn>4</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, in chordal graphs and split graphs, respectively, for the problem of deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> parameterized by <span><math><mi>k</mi></math></span>. We also present exponential kernels for computing both <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a cograph. On the other hand, we show that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> does not admit a polynomial kernel parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a chordal graph, unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP</mi><mo>/</mo><mi>poly</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 196-217\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001891\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001891","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的方向D是由G得到的有向图,通过将每条边替换为具有相同端点的两条可能的弧中的恰好一条。图G的取向D是k取向,如果图D中每个顶点的入度数不大于k。如果图G的任意两个相邻顶点在D中具有不同的入度数,则图G的取向D是固有的。图G的固有取向数,用χ∈(G)表示,是使G具有固有的k取向的最小k。图G的加权方向是一对(D,w),其中D是G的一个方向,w是一个弧加权A(D)→N≠{0}。G的半固有取向是G的加权取向(D,w),使得对于G中相邻的两个顶点u和v,我们有S(D,w)(v)≠S(D,w)(u),其中S(D,w)(v)是(D,w)中带头v的弧的权的和。对于正整数k,图G的半固有k取向(D,w)是G的半固有取向,使得maxv∈v (G)S(D,w)(v)≤k。图G的半固有取向数,用χs∈(G)表示,是使得G具有半固有k取向的最小k。在本文中,我们首先证明了对于每一个分裂图G, χs′(G)∈{ω(G)−1,ω(G)},并且对于给定一个分裂图G,决定χs′(G)=ω(G)−1是否为np完全问题。我们还证明了,对于每一个k,存在一个(弦)图G和一个G的分裂子图H,使得χ l2 (G)≤k且χ l2 (H)=2k−2。在后续中,我们证明了,对于每一个n≥p(p+1), χs∈(Pnp)=32p,其中Pnp是n个顶点上路径的p次幂。我们进一步研究了没有大团的单位区间图:我们证明了对于任意ω(G)=3的单位区间图G, χ l2 (G)≤3,并且给出了χ l2 (G)=ω(G)=3的单位区间图的完整刻画。然后,我们证明了在协部图中判定χs∈(G)=ω(G)−1是否可以在多项式时间内解决。最后,我们证明了当用G中顶点覆盖的最小尺寸或G的树宽度参数化时,计算χs′(G)是FPT的。我们还证明了当用邻域分集加上解的值参数化时,不仅计算χs′(G),而且χ′(G)也承认一个多项式核。这些结果意味着在弦图和分裂图中分别有大小为40o (k2)和O(2kk2)的核,用于决定χs′(G)是否由k参数化的k。我们还提出了计算χ′(G)和χs′(G)的指数核,当G是一个图时,解的值参数化了χ′(G)和χs′(G)。另一方面,我们证明了当G是弦图时,计算χs∈(G)不允许存在由解的值参数化的多项式核,除非NP≠coNP/poly。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-proper orientations of dense graphs
An orientation D of a graph G is a digraph obtained from G by replacing each edge by exactly one of the two possible arcs with the same ends. An orientation D of a graph G is a k-orientation if the in-degree of each vertex in D is at most k. An orientation D of G is proper if any two adjacent vertices have different in-degrees in D. The proper orientation number of a graph G, denoted by χ(G), is the minimum k such that G has a proper k-orientation.
A weighted orientation of a graph G is a pair (D,w), where D is an orientation of G and w is an arc-weighting A(D)N{0}. A semi-proper orientation of G is a weighted orientation (D,w) of G such that for every two adjacent vertices u and v in G, we have that S(D,w)(v)S(D,w)(u), where S(D,w)(v) is the sum of the weights of the arcs in (D,w) with head v. For a positive integer k, a semi-proper k-orientation (D,w) of a graph G is a semi-proper orientation of G such that maxvV(G)S(D,w)(v)k. The semi-proper orientation number of a graph G, denoted by χs(G), is the least k such that G has a semi-proper k-orientation.
In this work, we first prove that χs(G){ω(G)1,ω(G)} for every split graph G, and that, given a split graph G, deciding whether χs(G)=ω(G)1 is an NP-complete problem. We also show that, for every k, there exist a (chordal) graph G and a split subgraph H of G such that χ(G)k and χ(H)=2k2. In the sequel, we show that, for every np(p+1), χs(Pnp)=32p, where Pnp is the pth power of the path on n vertices. We investigate further unit interval graphs with no big clique: we show that χ(G)3 for any unit interval graph G with ω(G)=3, and present a complete characterization of unit interval graphs with χ(G)=ω(G)=3. Then, we show that deciding whether χs(G)=ω(G)1 can be solved in polynomial time in the class of cobipartite graphs. Finally, we prove that computing χs(G) is FPT when parameterized by the minimum size of a vertex cover in G or by the treewidth of G. We also prove that not only computing χs(G), but also χ(G), admits a polynomial kernel when parameterized by the neighborhood diversity plus the value of the solution. These results imply kernels of size 4O(k2) and O(2kk2), in chordal graphs and split graphs, respectively, for the problem of deciding whether χs(G)k parameterized by k. We also present exponential kernels for computing both χ(G) and χs(G) parameterized by the value of the solution when G is a cograph. On the other hand, we show that computing χs(G) does not admit a polynomial kernel parameterized by the value of the solution when G is a chordal graph, unless NPcoNP/poly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信