Júlio Araújo , Frédéric Havet , Claudia Linhares Sales , Nicolas Nisse , Karol Suchan
{"title":"密集图的半固有取向","authors":"Júlio Araújo , Frédéric Havet , Claudia Linhares Sales , Nicolas Nisse , Karol Suchan","doi":"10.1016/j.dam.2025.04.020","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>orientation</em> <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a digraph obtained from <span><math><mi>G</mi></math></span> by replacing each edge by exactly one of the two possible arcs with the same ends. An orientation <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span><em>-orientation</em> if the in-degree of each vertex in <span><math><mi>D</mi></math></span> is at most <span><math><mi>k</mi></math></span>. An orientation <span><math><mi>D</mi></math></span> of <span><math><mi>G</mi></math></span> is <em>proper</em> if any two adjacent vertices have different in-degrees in <span><math><mi>D</mi></math></span>. The <em>proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a proper <span><math><mi>k</mi></math></span>-orientation.</div><div>A <em>weighted orientation</em> of a graph <span><math><mi>G</mi></math></span> is a pair <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>D</mi></math></span> is an orientation of <span><math><mi>G</mi></math></span> and <span><math><mi>w</mi></math></span> is an arc-weighting <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>→</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. A <em>semi-proper orientation</em> of <span><math><mi>G</mi></math></span> is a weighted orientation <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of <span><math><mi>G</mi></math></span> such that for every two adjacent vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> in <span><math><mi>G</mi></math></span>, we have that <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the sum of the weights of the arcs in <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> with head <span><math><mi>v</mi></math></span>. For a positive integer <span><math><mi>k</mi></math></span>, a <em>semi-proper</em> <span><math><mi>k</mi></math></span><em>-orientation</em> <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a semi-proper orientation of <span><math><mi>G</mi></math></span> such that <span><math><mrow><msub><mrow><mo>max</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span>. The <em>semi-proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the least <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a semi-proper <span><math><mi>k</mi></math></span>-orientation.</div><div>In this work, we first prove that <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> for every split graph <span><math><mi>G</mi></math></span>, and that, given a split graph <span><math><mi>G</mi></math></span>, deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> is an <span><math><mi>NP</mi></math></span>-complete problem. We also show that, for every <span><math><mi>k</mi></math></span>, there exist a (chordal) graph <span><math><mi>G</mi></math></span> and a split subgraph <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> and <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></math></span>. In the sequel, we show that, for every <span><math><mrow><mi>n</mi><mo>≥</mo><mi>p</mi><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>p</mi></mrow></mfenced></mrow></math></span>, where <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> is the <span><math><mi>p</mi></math></span>th power of the path on <span><math><mi>n</mi></math></span> vertices. We investigate further unit interval graphs with no big clique: we show that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for any unit interval graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>, and present a complete characterization of unit interval graphs with <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>. Then, we show that deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> can be solved in polynomial time in the class of cobipartite graphs. Finally, we prove that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><mi>FPT</mi></math></span> when parameterized by the minimum size of a vertex cover in <span><math><mi>G</mi></math></span> or by the treewidth of <span><math><mi>G</mi></math></span>. We also prove that not only computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, but also <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, admits a polynomial kernel when parameterized by the neighborhood diversity plus the value of the solution. These results imply kernels of size <span><math><msup><mrow><mn>4</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, in chordal graphs and split graphs, respectively, for the problem of deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> parameterized by <span><math><mi>k</mi></math></span>. We also present exponential kernels for computing both <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a cograph. On the other hand, we show that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> does not admit a polynomial kernel parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a chordal graph, unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP</mi><mo>/</mo><mi>poly</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 196-217"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-proper orientations of dense graphs\",\"authors\":\"Júlio Araújo , Frédéric Havet , Claudia Linhares Sales , Nicolas Nisse , Karol Suchan\",\"doi\":\"10.1016/j.dam.2025.04.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <em>orientation</em> <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a digraph obtained from <span><math><mi>G</mi></math></span> by replacing each edge by exactly one of the two possible arcs with the same ends. An orientation <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span><em>-orientation</em> if the in-degree of each vertex in <span><math><mi>D</mi></math></span> is at most <span><math><mi>k</mi></math></span>. An orientation <span><math><mi>D</mi></math></span> of <span><math><mi>G</mi></math></span> is <em>proper</em> if any two adjacent vertices have different in-degrees in <span><math><mi>D</mi></math></span>. The <em>proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a proper <span><math><mi>k</mi></math></span>-orientation.</div><div>A <em>weighted orientation</em> of a graph <span><math><mi>G</mi></math></span> is a pair <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>D</mi></math></span> is an orientation of <span><math><mi>G</mi></math></span> and <span><math><mi>w</mi></math></span> is an arc-weighting <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>→</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. A <em>semi-proper orientation</em> of <span><math><mi>G</mi></math></span> is a weighted orientation <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of <span><math><mi>G</mi></math></span> such that for every two adjacent vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> in <span><math><mi>G</mi></math></span>, we have that <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the sum of the weights of the arcs in <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> with head <span><math><mi>v</mi></math></span>. For a positive integer <span><math><mi>k</mi></math></span>, a <em>semi-proper</em> <span><math><mi>k</mi></math></span><em>-orientation</em> <span><math><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a semi-proper orientation of <span><math><mi>G</mi></math></span> such that <span><math><mrow><msub><mrow><mo>max</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span>. The <em>semi-proper orientation number</em> of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the least <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a semi-proper <span><math><mi>k</mi></math></span>-orientation.</div><div>In this work, we first prove that <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> for every split graph <span><math><mi>G</mi></math></span>, and that, given a split graph <span><math><mi>G</mi></math></span>, deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> is an <span><math><mi>NP</mi></math></span>-complete problem. We also show that, for every <span><math><mi>k</mi></math></span>, there exist a (chordal) graph <span><math><mi>G</mi></math></span> and a split subgraph <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> and <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></math></span>. In the sequel, we show that, for every <span><math><mrow><mi>n</mi><mo>≥</mo><mi>p</mi><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>p</mi></mrow></mfenced></mrow></math></span>, where <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> is the <span><math><mi>p</mi></math></span>th power of the path on <span><math><mi>n</mi></math></span> vertices. We investigate further unit interval graphs with no big clique: we show that <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for any unit interval graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>, and present a complete characterization of unit interval graphs with <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>. Then, we show that deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> can be solved in polynomial time in the class of cobipartite graphs. Finally, we prove that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><mi>FPT</mi></math></span> when parameterized by the minimum size of a vertex cover in <span><math><mi>G</mi></math></span> or by the treewidth of <span><math><mi>G</mi></math></span>. We also prove that not only computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, but also <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, admits a polynomial kernel when parameterized by the neighborhood diversity plus the value of the solution. These results imply kernels of size <span><math><msup><mrow><mn>4</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, in chordal graphs and split graphs, respectively, for the problem of deciding whether <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> parameterized by <span><math><mi>k</mi></math></span>. We also present exponential kernels for computing both <span><math><mrow><mover><mrow><mi>χ</mi></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a cograph. On the other hand, we show that computing <span><math><mrow><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>⃗</mo></mover><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> does not admit a polynomial kernel parameterized by the value of the solution when <span><math><mi>G</mi></math></span> is a chordal graph, unless <span><math><mrow><mi>NP</mi><mo>⊆</mo><mi>coNP</mi><mo>/</mo><mi>poly</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 196-217\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001891\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001891","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An orientation of a graph is a digraph obtained from by replacing each edge by exactly one of the two possible arcs with the same ends. An orientation of a graph is a -orientation if the in-degree of each vertex in is at most . An orientation of is proper if any two adjacent vertices have different in-degrees in . The proper orientation number of a graph , denoted by , is the minimum such that has a proper -orientation.
A weighted orientation of a graph is a pair , where is an orientation of and is an arc-weighting . A semi-proper orientation of is a weighted orientation of such that for every two adjacent vertices and in , we have that , where is the sum of the weights of the arcs in with head . For a positive integer , a semi-proper-orientation of a graph is a semi-proper orientation of such that . The semi-proper orientation number of a graph , denoted by , is the least such that has a semi-proper -orientation.
In this work, we first prove that for every split graph , and that, given a split graph , deciding whether is an -complete problem. We also show that, for every , there exist a (chordal) graph and a split subgraph of such that and . In the sequel, we show that, for every , , where is the th power of the path on vertices. We investigate further unit interval graphs with no big clique: we show that for any unit interval graph with , and present a complete characterization of unit interval graphs with . Then, we show that deciding whether can be solved in polynomial time in the class of cobipartite graphs. Finally, we prove that computing is when parameterized by the minimum size of a vertex cover in or by the treewidth of . We also prove that not only computing , but also , admits a polynomial kernel when parameterized by the neighborhood diversity plus the value of the solution. These results imply kernels of size and , in chordal graphs and split graphs, respectively, for the problem of deciding whether parameterized by . We also present exponential kernels for computing both and parameterized by the value of the solution when is a cograph. On the other hand, we show that computing does not admit a polynomial kernel parameterized by the value of the solution when is a chordal graph, unless .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.