最大次为5的图的内射边着色的进一步结果

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jian Lu , Xiang-Feng Pan
{"title":"最大次为5的图的内射边着色的进一步结果","authors":"Jian Lu ,&nbsp;Xiang-Feng Pan","doi":"10.1016/j.dam.2025.04.021","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> is called injective <span><math><mi>k</mi></math></span>-edge colorable if it has a <span><math><mi>k</mi></math></span>-edge coloring <span><math><mi>φ</mi></math></span> such that any three consecutive edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in the same path or triangle satisfy <span><math><mrow><mi>φ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≠</mo><mi>φ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. The injective chromatic index <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the smallest <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> is injective <span><math><mi>k</mi></math></span>-edge colorable. We demonstrate that any graph with maximum degree 5 has <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> at most 7 (resp. 8, 9, 10) if its maximum average degree is less than <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> (resp. <span><math><mfrac><mrow><mn>12</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>), which improves some results of Zhu <em>et al.</em> (2023) and Bu <em>et al.</em> (2024).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 176-184"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further results on injective edge coloring of graphs with maximum degree 5\",\"authors\":\"Jian Lu ,&nbsp;Xiang-Feng Pan\",\"doi\":\"10.1016/j.dam.2025.04.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph <span><math><mi>G</mi></math></span> is called injective <span><math><mi>k</mi></math></span>-edge colorable if it has a <span><math><mi>k</mi></math></span>-edge coloring <span><math><mi>φ</mi></math></span> such that any three consecutive edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in the same path or triangle satisfy <span><math><mrow><mi>φ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≠</mo><mi>φ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. The injective chromatic index <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the smallest <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> is injective <span><math><mi>k</mi></math></span>-edge colorable. We demonstrate that any graph with maximum degree 5 has <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> at most 7 (resp. 8, 9, 10) if its maximum average degree is less than <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> (resp. <span><math><mfrac><mrow><mn>12</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>), which improves some results of Zhu <em>et al.</em> (2023) and Bu <em>et al.</em> (2024).</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 176-184\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500191X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500191X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果图G具有k边着色φ,使得同一路径或三角形中的任意三条连续边e1,e2, e3满足φ(e1)≠φ(e3),则称图G为内射k边可着色。单射色指数χi ' (G)是最小的k,使得G是单射k边可着色的。我们证明了任何最大次为5的图的χi ' (G)最大为7。如果其最大平均度小于73,则为8,9,10。125, 52, 83),改进了Zhu et al.(2023)和Bu et al.(2024)的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further results on injective edge coloring of graphs with maximum degree 5
A graph G is called injective k-edge colorable if it has a k-edge coloring φ such that any three consecutive edges e1,e2, and e3 in the same path or triangle satisfy φ(e1)φ(e3). The injective chromatic index χi(G) is the smallest k such that G is injective k-edge colorable. We demonstrate that any graph with maximum degree 5 has χi(G) at most 7 (resp. 8, 9, 10) if its maximum average degree is less than 73 (resp. 125, 52, 83), which improves some results of Zhu et al. (2023) and Bu et al. (2024).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信